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Abstract. In many capacity-intensive industries (e.g. electricity, band-

width), exchanges allow firms to buy and sell wholesale capacity before sell-

ing on the retail market. This allows firms to smooth demand shocks, but it

also raises suspicions that exchanges facilitate tacit collusion to limit capac-

ity investment. This paper models investment and exchange in a one-shot

game and in a repeated game with tacit collusion. It finds that the presence

of the exchange does not reduce total capacity investment, and thus does

not raise consumer prices. In fact, the exchange may make it more difficult

to sustain tacit collusion.
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Tacit Collusion in Capacity Investment:

The Role of Capacity Exchanges

1 Introduction

In many industries where capacity constraints are important, such as energy

and telecommunications, firms can trade capacity in an exchange. These

exchanges are modeled on commodities exchanges for products like oil and

soybeans, but they are focused on trades between potentially competing

firms.1 This paper examines how capacity exchanges affect the potential for

an oligopolistic industry to tacitly collude on the initial capacity investment.

It is important to distinguish between intermediate good exchanges,

which are two-sided markets that connect customers with suppliers, and ca-

pacity exchanges, which are essentially one-sided markets where firms trade

with one another. As an example, Kwoka (2001) studied exchanges in the

automobile industry and noted that “The competitive concerns over B2B

exchanges fall into two broad categories – those involving the final output of

the exchange participants (for example, cars) and those involving the prod-

ucts transacted on the exchanges themselves (e.g., wiring or tires)” (pg. 66).
1Some trades have been misused in accounting frauds (e.g. ENRON and Global Cross-

ing), but the legitimate benefits are sufficient that exchanges will continue to be important.
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In commodity infrastructure markets like electricity or telecommunications

bandwidth, these are close to one and the same.

Lucking-Reiley and Spulber (2001) surveyed business-to-business exchanges

of both types and note that they can enhance efficiency but also raise an-

titrust concerns, in particular the possibility of tacit collusion. The concern

is echoed by Kühn (2001) who proposes that exchanges should only make

available aggregate data (as indeed they do in our model).

There are two distinct routes by which the introduction of a capacity

exchange can affect tacit collusion. The first is that the exchange may alter

the information structure of the game firms play. Imperfect information

about other firms’ actions means that cooperative actions could be mistaken

for defections, and price wars could result (Green and Porter 1982). A

capacity exchange might be one of a number of ways to improve information

and thus facilitate tacit collusion (Kühn 2001). Similarly, an exchange could

be used as a means of punishment in the event of defection. For example, a

simple punishment strategy would just bar a defecting firm from using the

exchange.

The other route by which a capacity exchange could affect tacit collu-

sion is uncertainty over the demand for capacity. Uncertainty implies that

investment can be ex post inefficient, and a capacity exchange will therefore
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alter the payoff structure of the game – in particular it alters the defection

payoff in a tacit collusion arrangement. This effect is the focus of this paper.

We consider industries where a small number of firms make long-lived

investments in capacity. Firms thus choose quantities à la Cournot, and as

in the standard Cournot model the entire quantity is sold at the market-

clearing price. After the capacity commitments are made, there are random

shocks to retail demand; thus, firms have too much or too little capacity

relative to the ex post Cournot optimum.

In this environment, a capacity exchange is only desirable if the firms

have differentiated retail demand curves and at least partially uncorrelated

demand shocks. Otherwise, the total quantity would simply be sold at the

price the market would bear, and no amount of capacity trading would

change that price. Thus, we model goods which are perfect substitutes

from the firms’ point of view, but imperfect substitutes from the point of

view of retail consumers. For example, in markets like telecommunications

and electricity, bandwidth and megawatts are homogeneous in the wholesale

market, but they are bundled with associated services and sold in multiple,

overlapping retail markets subject to diverse demand shocks.

With a capacity exchange, firms with more demand can buy extra capac-

ity from those with less demand. This allows all firms to sell an amount that
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is closer to their optimal quantity in the retail market. Under the Cournot

assumption that retail prices adjust to clear the market, this effect raises

profits but not the expected price, so social surplus unambiguously rises.2

In a repeated game, the firms can tacitly collude to reduce total capacity

even without an exchange. Adding the exchange actually increases the in-

centive to defect, so that it is more difficult to sustain tacit collusion with

the exchange than without it. We believe this is a novel result that needs

to be weighed against the information effects mentioned above.3

The paper is organized as follows. Section 2 presents the basic model. In

section 3, we apply that model in a static setting without an exchange and

then add the exchange in section 4. In section 5 we move to the repeated

game setting, and we conclude in section 6.
2If demand shocks were correlated across firms (e.g. a general recession or widespread

hot weather), all firms would have either excess demand or supply, and trading could not

improve the outcome.
3Somewhat comparable results by Maksimovic (1988) and Stenbacka (1994) show that

firms with higher debt-equity ratios have more difficulty sustaining tacit collusion and

that firms may choose less debt to avoid this problem. In their setting, debt raises the

defection payoff just as the exchange does in this paper.
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2 Model

There are N firms, indexed by j = 1, . . . , N , each producing a single good.

Retail demand for each firm’s good is linear:

pj = α− βqj − γ
N∑

i=1

qi + εj (1)

where pj is the retail price per unit and qj is the quantity made available

by firm j. Parameters β and γ indicate that retail price responds to a

firm’s own quantity and to the total quantity in the market. Thus β = 0

represents the conventional linear Cournot setup, while γ = 0 represents

monopoly. Demand also includes a random shock, εj , with expected value

0 and variance σ2. The shocks are firm-specific and are independent and

identically distributed.4

Firms play a three-stage game:

Stage 1: Capacity Investment Each firm chooses to build capacity kj .

Let all firms have identical constant marginal cost of capacity c.

Stage 2: Capacity Trading Each firm learns the realization of its εj and

then chooses a quantity δj that it will trade in the exchange. If δj < 0,

firm j sells capacity into the exchange; if δj > 0, firm j buys addi-

tional capacity. The price at which capacity is bought and sold is
4We assume that the support of εj is sufficiently bounded to prevent negative prices.
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determined in the exchange and is denoted s. Firms are price-takers

in the exchange.5

Stage 3: Retail Sales In the third stage, the quantity that firm j sells to

retail consumers is qj = kj + δj with pj given by (1).6

The next three sections analyze the game under increasingly complex

conditions. We first examine a benchmark with no exchange. Next, we

consider firms that trade in an exchange in one period only. Finally, we

extend the model to a repeated game.

3 Competition Without a Capacity Exchange

Consider a benchmark case in which there is no exchange, i.e. δj = 0 ∀j.

We solve the game backwards to find a subgame perfect equilibrium. By

stage 3, each firm has chosen its kj . The profit of firm j is

Πj =

(
α− βkj − γ

N∑
i=1

ki + εj

)
kj − ckj (2)

There is no stage 2, since there is no exchange. In stage 1, firm j chooses

kj . However, the value of εj has not yet been realized, so firm j must
5We discuss relaxing this assumption in Section 6.
6There is no strategic decision in “stage” 3, so it is not properly a subgame, but it is

easier to describe the model if we separate retail sales from the wholesale trading market.

Thus we slightly abuse game theory terminology and call this a three-stage game.
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maximize the expected value of Πj . Solving simultaneously for all firms

gives the Cournot equilibrium quantity:

kNT =
α− c

2β + γ + γN

where the superscript NT denotes “No Trading.” The firm’s expected profit

based on this optimal investment is

E(ΠNT ) = (α− (β + γN)kNT )kNT − ckNT (3)

These are just the familiar Cournot results using the β and γ notation.

4 Competition With a Capacity Exchange

Now introduce trading into the one-shot game. Since firms have symmetric

costs, the only incentive to trade is to smooth demand shocks.

4.1 Stage 3 Retail Sales

In stage 3, both kj and δj are given. The quantity that firm j sells to retail

consumers is kj + δj and the price it charges is

pj = α− β(kj + δj)− γ
N∑

i=1

(ki + δi) + εj (4)

The firm’s retail revenue is Rj = pj(ki + δi)
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4.2 Stage 2 Capacity Trading

By stage 2, capacity kj is set, but firm j can choose δj , the amount of

capacity that it buys or sells. The firm maximizes its operating profit from

stage 3 retail sales minus trading costs:

max
δj

πj = Rj − sδj (5)

where s is the price of capacity in the capacity exchange. We assume that

the firms all behave as price takers with regard to trading. That is, they do

not expect that their trades will influence s.7

Since no new capacity can be built during stage 2,
∑N

i=1 ki remains un-

changed despite the trading. The first order condition for (5) is firm j’s

trading curve as a function of s:

δj(s) =
α− γ

∑N
i=1 ki + εj − s

2β
− kj (6)

The total amount of capacity sold in the trading market must equal

the total amount purchased. The market clears if
∑N

i=1 δi = 0. Combin-

ing the market clearing condition with the trading curves of each firm, the

equilibrium price is:

s∗ = α− (2β + γN)
∑N

i=1 ki

N
+ ε

7See the discussion in Section 6 on relaxing this assumption.
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where ε =
∑N

i=1 εi.

Finding the equilibrium quantities in the trading market is difficult, pri-

marily because of very tedious algebra. The following proposition gives re-

sults that apply to this model and a range of similar linear-demand oligopoly

models:

Proposition 1 Let firm j have trading curve δj(s) = Aj + Bjεj + Djs− kj

and let this firm sell its output at retail price pj = Fj +Gjεj +Hj(kj + δj)+

Lj
∑N

i=1 ki. Let demand shocks ε1, ..., εN be i.i.d. random variables with

mean 0 and variance σ2. If all firms behave as price takers in the capacity

exchange, then the quantity traded by firm j is

δj(s∗) = Âj + Bjεj −Dj

N∑
i=1

D̂iεi − kj

and the expected operating profit of firm j (net of trading costs) is

E(πj) = Ãj + B̃jσ
2

where the coefficients Âj , Ãj, etc. are defined in the proof and are functions

of the capacities, ki, and the parameters only.

The proof of Proposition 1 and all subsequent propositions are given in

the Appendix. Applying the proposition to the Cournot case of (4) and (6)
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gives equilibrium capacity trade for firm j:

δj(s∗) = k − kj +
εj − ε

2β

where k =
∑N

i=1
ki

N . Firms with below-average capacity or above-average

demand will buy more in the capacity exchange. Under trading, a firm’s

retail quantity supplied and retail price charged depend on its own physical

capacity only insofar as its own capacity affects the total amount of capacity

installed by all firms. This shows how capacity trading smooths outcomes

relative to the no-trading case.

The expected operating profit of firm j is

E(πj) = (α− (β + γN)k)kj + β(k − kj)k +
N − 1
4βN

σ2 (7)

The intuition behind (7) is that trading has three effects. First, the firm

trades, on average, to the industry average capacity, so a firm’s own retail

price is determined entirely by the industry average rather than its own

quantity. Second, there is a benefit or cost to having capacity different from

the industry average (but this effect disappears in the symmetric equilibrium

we will discuss below). Third, there is a constant benefit from smoothing

the random shocks which is proportional to the variance of the shocks.
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4.3 Stage 1 Capacity Investment

In Stage 1, firms anticipate the capacity trading equilibrium of stage 2, and

therefore they anticipate operating profits E(πj). Each firm maximizes net

profit E(Πj) = E(πj) − ckj by choosing kj . We employ the usual Cournot

assumption that each firm takes all of the other firms’ capacities as fixed.

The first order condition is

dE(Πj)
dkj

= α− (2β + γN)
(

k +
kj

N

)
+

2βk

N
= c

In equilibrium, all of the firms solve this condition. Solving simultaneously,

the equilibrium capacity choice is:

kT =
α− c

2β + γ + γN
= kNT

where superscript “T” stands for trading. Trading does not change the level

of capacity investment from the no-trading case. Substituting this level of

capacity investment into the expected profit gives:

E(ΠT
j ) = E(ΠNT

j ) +
N − 1
4βN

σ2 (8)

Capacity trading allows firms to handle demand shocks better, thus in-

creasing profits. The gains are greater when the variance of the random

shock is higher. Since N−1
N is concave, most of the gains from capacity

trading come with just a few firms participating.
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The size of the increased profits does not depend on how vigorous down-

stream competition is (i.e. how large γ is). In this model, trading is not a

mechanism to increase market power or hurt the consumer; it is purely a

way for firms to increase profits by smoothing shocks. Consumers neither

gain nor lose on average, since total capacity installed is unchanged.

5 Repeated Games With a Capacity Exchange

The results thus far hold in a conventional one-shot model. We now examine

whether the exchange will be less efficient in a repeated game setting.

Tacit collusion with trading potentially involves two effects: coordination

on stage 1 capacities and coordination on trading in the exchange in stage

2. Strategies to punish defection also involve two potential effects: in the

event of defection, firms could alter stage 1 capacities or alter their stage 2

trading quantitities, or both.

To narrow this large set of problems, we focus on cooridnation and pun-

ishments involving stage 1 capacities. Exchange behavior continues to be

price-taking (and therefore efficient), so colluding firms have no collective

incentive to alter exchange behavior (because no improvement is possible).

The entire game, stages 1-3, is repeated infinitely and all actions of all

firms are perfectly observable. The simplest form of tacit collusion relies on
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a trigger strategy equilibrium (Friedman 1971). All firms install a collusive

capacity in stage 1, then trade as in Section 4 in stage 2, and sell to customers

in stage 3. If any firm tries to cheat on this equilibrium path, then all firms

revert to Nash behavior forever.

Martin (2002) presents a nice textbook treatment of this type of repeated

game and shows that cooperation is sustainable as long as the period-to-

period interest rate r is not too large:

1
r
≥ payoff to defecting− payoff to colluding

payoff to colluding−Nash payoff
(9)

where each of the payoffs occurs in just one repetition of the game. We now

find these payoffs for our model.

Section 4 discussed how the Nash payoffs are similar in the trading and

no-trading cases but for the addition of a constant (equation (8)). The

collusive payoffs are also similar. In the no-trading case, the firms coordinate

and choose kNT
COL to solve:

max
k

E(ΠNT ) = (α− βk − γNk) k − ck

The solution is kNT
COL = α−c

2β+2γN , with a corresponding expected profit E(ΠNT
COL).

With trading, firms jointly maximize expected profits given by (7). Since

all firms are identical before the demand shocks are realized, the collusive

quantity is the same for each firm. Rewriting (7) with k = k gives the
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collusive maximization problem with trading:

max
k

(αk − βk + γNk)k +
N − 1
4βN

σ2 − ck

By inspection, this is the same as the no-trading problem except for the

addition of a constant; hence the collusive quantity is the same with or

without the exchange. Thus, we denote the collusive quantity by kCOL

either with or without trading, and we find that the difference between the

collusive profits with and without trading is just a constant:

E(ΠT
COL) = E(ΠNT

COL) +
N − 1
4βN

σ2

Since both the collusive and Nash payoffs only differ by a constant which

cancels in the denominator of (9), the change in interest rates that support

tacit collusion is determined entirely by the defection payoff in the numer-

ator. Comparing the defection capacities under the two regimes leads to a

surprising result:

Proposition 2 The defection capacity under trading is greater than the de-

fection capacity without trading: kT
DEF > kNT

DEF .

The intuition behind this result is that the payoffs to defection are dif-

ferent under the different regimes. Without trading, firm j maximizes (3)

for the case where it chooses kj while all other firms choose kCOL. First de-

fine kDEF = kj+(N−1)kCOL

N as the industry average capacity when all firms
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except firm j choose the collusive capacity. Then kNT
DEF solves:

max
kj

(α− (β + γN)kDEF )kj + β(kDEF − kj)kj − ckj

Defection under trading is more complicated because it involves two ef-

fects. First, as in any collusion model, the defecting firm gains market share

while suffering only a small decline in price. Second, the defecting firm has

more capacity than the others, so it tends to sell capacity in the exchange.

These sales are profitable and augment the incentive for a defecting firm to

increase capacity. Rewriting (7), the trading defection capacity kT
DEF solves:

max
kj

(α− (β + γN)kDEF )kj + β(kDEF − kj)kDEF +
N − 1
4βN

σ2 − ckj

The trading maximization problem is different because trading allows

the defecting firm to gain market share but mute the price-reducing effect

on its own price. It does this by selling some of the extra capacity to other

firms, which spreads the price-reduction to each of the firms. In essence,

trading allows the defector to gain all the benefits of cheating but force

some of the costs onto the other firms.

Mathematically, the difference is in the second terms of the objective

functions. Without trading, the defecting firm suffers the full effect of its

defection capacity, but with trading, it suffers only to the extent that it

raises the industry average capacity. Thus, defection profits must be higher
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under trading than they are without trading, even net of the constant term.

This implies:

Proposition 3 Tacit collusion can be sustained at higher interest rates

without trading than with trading.

6 Conclusion

Capacity exchanges have an obvious benefit since they allow firms to smooth

firm-specific demand shocks. At the same time, they may give the ap-

pearance of fostering collusion among competing firms. We showed that

in a static game, the exchange does raise firm profits and does not benefit

consumers on average, but neither does it increase market power. When

this game is repeated, we showed that the exchange actually has a pro-

competitive effect in the sense that it may disrupt tacit collusion. Thus,

there is a countervailing force in capacity exchanges that works against any

tacit collusion that may come from information and communication.

It is important to recognize that firms may not behave as perfect com-

petitors in capacity exchanges. In this case, our efficiency results would be

diluted. Strategic bidding would make the exchange less efficient and lower

the firms’ profits. But we believe that strategic bidding in the exchange

cannot increase average prices in the retail market as long as all capacity
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must be sold eventually.

There are many possible extensions to the tacit collusion model. For

example, the punishment for defecting could come entirely through the ex-

change itself rather than changes in physical capacity. Also, not all variables

may be perfectly observable, in which case the exchange could facilitate col-

lusion by providing information. Then the pro-competitive efficiency effect

in this paper would have to be traded off against the anti-competitive infor-

mation effect.

Appendix

Proof of Proposition 1: The price in the exchange is determined by the

equilibrium condition (all summations are from i = 1 to N):

∑
δi(s∗) = 0

∑
Ai +

∑
Biεi +

∑
Dis

∗ =
∑

ki

s∗ =
∑

Ai+
∑

Biεi−
∑

ki

−
∑

Di

Substituting s∗ into δ(s), the quantity traded by firm j is:

(
Aj −Dj

∑
Ai∑
Di

+ Dj∑
Di

∑
ki

)
+ Bjεj + Dj

−
∑

Biεi∑
Di

− kj

= Âj + Bjεj + Dj
∑

D̂iεi − kj
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This gives the trading curve. The firm’s capacity after trading is

q∗j = δj(s∗) + kj

Given these trades, the retail price is:

p∗j = Fj + Gjεj + Hjq
∗
j + Lj

N∑
i=1

ki

=

(
Fj + HjÂj + Lj

N∑
i=1

ki

)
+ (Gj + HjBj)εj + HjDj

N∑
i=1

D̂iεi

= F̂j + Ĝjεj + HjDj

N∑
i=1

D̂iεi

Then the operating profit, net of the trading costs, is found by several

steps of algebra which lead to:

πj = p∗jq
∗
j − s∗(q∗j − kj)

= ÂjF̂j − (Âj − kj)

(
Âj −Aj

Dj

)

+

(
ÂjĜj + BjF̂j −Bj

(
Âj −Aj

Dj

))
εj

+(BjĜj)ε2j

+

(
ÂjDjHj + DjF̂j −Dj

(
Âj −Aj

Dj

)
− Âj + kj

)∑
D̂iεi

+(BjDjHj + DjĜj −Bj)εj

∑
D̂iεi

+(D2
j Hj −Dj)

(∑
D̂iεi

)2

When we take the expected value of this operating profit, we can use the

i.i.d. assumption to simplify the above. In particular, we have E(εj) = 0,
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E(εiεj) = 0∀i 6= j, and E(ε2j ) = σ2. Then:

E(πj) = ÂjF̂j − (Âj − kj)

(
Âj −Aj

Dj

)

+(BjĜj)σ2

+(BjDjHj + DjĜj −Bj)D̂jσ
2

+(D2
j Hj −Dj)

∑
D̂2

i σ
2

This is equal to a constant plus a collection of terms multiplied by the

variance, hence we can write it

E(πj) = Ãj + B̃jσ
2

Proof of Proposition 2: We want to show that:

kT
DEF > kNT

DEF

αN−cN−(2β−2βN−1+γN)(N−1)kCOL

4β−2βN−1+2γN
> α−c−γ(N−1)kCOL

2β+2γ

1
kCOL

αN−cN−(2β−2βN−1+γN)(N−1)kCOL

2β−βN−1+γN
> 1

kCOL

α−c−γ(N−1)kCOL

β+γ

γN2+4β−2βN−1+γN
2β−βN−1+γN

> 2β+γN+γ
β+γ

γN2+2β−βN−1

2βN−β+γN2 > βN−1+γ
β+γ

γβN2+2β2+3βγ−2βγN
(2βN−β+γN2)(β+γ)

> βN−1(γN2+2βN+γ)
(2βN−β+γN2)(β+γ)

γN2 + 3γ − 3γN − γN−1 > 0

N(N − 3) + (3−N−1) > 0
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This holds for any N > 1, proving the proposition.

Proof of Proposition 3: We want to show that the defection payoff is higher

under trading. Suppose firm j played kNT
DEF in the trading case. Since

kNT
DEF > k

NT
DEF =

kNT
DEF + (N − 1)kCOL

N

the second term in the profit function would be greater in the trading case

than the non-trading case. So playing the suboptimal strategy kNT
DEF would

yield higher profits under trading. The optimal strategy kT
DEF must yield

even higher profits.
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