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Abstract

This paper examines tipping in the Armstrong (2006) two-sided

market model. By adding simple cost asymmetries to the original

model, we show that the model is quite robust to differences in net-

work size and deviations from 50-50 market share. It well represents

situations where asymmetries compensate for one another; for exam-

ple, one platform might incur marginal costs to court developers and

make up for it with lower costs to users. Our tests also make clear

that there is an implicit stand-alone utility in the Armstrong model

even when it is not specifically modeled. These results improve in-

terpretation of the many studies that use the Armstrong model for

policy analysis.
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1 Introduction

Two-sided markets, such as social networks, operating systems, and pay-

ment cards are increasingly important in business and in antitrust and

regulatory policy The platforms that facilitate these markets must attract

sufficient participation from two different groups (sides) in order to remain

in the market. When participation is too low on one platform, the mar-

ket is said to tip, and all agents from both sides join the platforms that

remain in the market.For example, in 2008 the market for high-definition

blue laser video discs tipped, with Toshiba’s HD DVD format losing to

Sony’s Blu-Ray format.1

The importance of two-sided markets has given rise to a large economics

literature, including many theory papers focusing on various strategic and

policy questions. A large percentage of these papers build on the model

of Armstrong (2006), which considers “pure participation externalities.”

That is, both buyers and sellers pay lump-sum access prices to join the

platform, and they exert positive indirect network effects on one another

that are not affected by the volume of trade but only by their participation.

In general, the result is that lower prices are provided to the side of the

market that is more competitive or provides more benefit to the other

side. on of which side to give the product to relies on the magnitude of

the inter-side network effects.2 Armstrong’s paper employs a “no-tipping

assumption” that simply rules out parameter values that would cause the

1The straw the broke the camel’s back was the January 4, 2008 announcement by

Warner Bros. Entertainment that they would be producing exclusively in the Blu-Ray

format. See Carnoy, D., “Warner goes Blu-ray exclusively, delivering crushing blow to

HD DVD,” CNET News (2008). Sony has been involved in repeated media format wars,

including the well-known VHS versus Betamax competition of the 1980s.
2Armstrong and Wright (2007) allow for variation in product differentiation across

the two sides of the market (i.e. sellers are ex-ante indifferent between the two platforms,

while buyers may have a preference for one side over the other), and they endogenize the

choice to multihome. They find that platforms do not compete directly for sellers, but

instead compete indirectly by attracting more buyers. Additionally, they find that sellers

endogenously choose to multihome if product differentiation between the two platforms

is sufficiently small.
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market to tip. In this paper, we ask what are the effects of this assumption

when the model is applied to real-world policy situations.

Applications of the Armstrong model are common. Hagiu (2009) ex-

tends it by adding a dimension of intra-platform competition and investi-

gates discrepancies in pricing between video game and computer software

markets. Choi (2009) uses the model to investigate the practice of tying and

its relation to multi-homing. Economides and T̊ag (2011) use it to exam-

ine network neutrality. Indeed, the first FCC order on network neutrality,

Preserving the Open Internet rule, 47 CFR Parts 0 and 8, cites Armstrong

(2006). Lin (2011) examines television programming, Hildebrand (2012)

derives an empirical test for network effects, and Rasch and Wenzel (2013,

2014) examine the role of software piracy and compatibility between the

platforms, all using the Armstrong model.

All of the above models preserve Armstrong’s no-tipping assumption, so

that by assumption platforms are sufficiently symmetric. In this paper, we

ask what would happen if the platforms were not symmetric. How large can

these asymmetries become before the no-tipping assumption is violated?

In particular, are the assumptions of the models within reasonable bounds

relative to real-world platforms? Our answer will be a qualified yes, with

the one caveat that the stand-alone value of a platform (i.e. its value apart

from its complementary components or users) must be sufficiently large for

the Armstrong model to be a sensible representation of reality.

The paper is organized as follows. The next section discusses the liter-

ature on the tipping phenomenon in two-sided markets. Section 3 presents

an extension of Armstrong’s model in which cost asymmetries make the

equilibrium market shares of two platforms different. Section 4 discusses

what causes the market to tip and establishes how large the asymmetries

between platforms can become without tipping the market. Section 5 con-

cludes.
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2 Literature on Tipping

Rysman (2009) gives three general conditions that promote tipping. First,

there may not be much horizontal product differentiation between plat-

forms. Second, agents on at least one side may use only one platform rather

than simultaneously using more than one (Sun and Tse (2007) show that

such “single-homing” is associated with tipping). Third, if the seller side

of the market produces highly differentiated products, sellers may strate-

gically favor tipping since the resulting single-platform competition will be

relatively soft.

Evans and Schmalensee (2010) note that tipping is a feature of networks

with once-for-all demand decisions, as in Armstrong and the present paper.

If consumers can change their demand decisions, then a dynamic model is

needed, and Evans and Schmalensee say, “We suspect that the importance

of tipping, which results when one network attains a marginal lead that

becomes an unstoppable competitive advantage, has been overstated, in

part because of the literature’s general assumption that switching costs

make participation decisions irreversible.”

Bolt and Tieman (2008) study what happens tipping in a monopoly

platform model with constant elasticity demands. They show that prices

are lowered to a minimum on the market side with more elastic demand,

and raised to a profit-maximizing level on the lower-elasticity side. Ambrus

and Argenziano (2009) model pricing and network choices in a two-sided

market that allows for heterogeneity of consumer valuation of the network

externality. They demonstrate that under monopoly or competition, mul-

tiple asymmetric networks can exist in equilibrium if there is sufficient

consumer heterogeneity. They show that for all asymmetric equilibria, one

platform is cheaper and larger on one side and the other is the opposite.

Bakos and Katsamakas (2008) show that asymmetric prices as a result

of each side’s valuation of the other can be the efficient cost structure in

two-sided markets even without the existence of asymmetric costs.

Empirical work confirms increased concentration and tipping in mar-

kets for home video game systems asa aresult of network effects. Dube et al.
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(2010) use counter-factual simulations of videogame markets where there

are no indirect network effects and find that in real markets (with net-

work effects) the individual firm concentration ratio is 23% higher. They

argue that, “Two standards . . . could be identical ex-ante but . . . due to

the emergence of positive feedback and the role of expectations, markets

with indirect network effects may become concentrated, i.e. tip towards

one of the competing standards,” (pg. 3). Additionally, Corts and Leder-

man (2009) study different generations of consoles in the U.S. home video

game market and provide evidence for early dominance of the market by

one firm (Nintendo), with higher degrees of market sharing becoming ev-

ident in later generations. They argue that the increasing prevalence of

non-exclusive software constitutes a form of compatibility and allows for

indirect network effects between owners of competing and incompatible

hardware, decreasing market concentration relative to exclusive network

effects.

3 Model

As in Section 4 of Armstrong (2006), consider two two-sided platforms

engaged in differentiated Bertrand competition. Platforms set access fees

to both sides of the market, and then buyers and sellers simultaneously

decide which platform to join. The platforms are modeled as completely

incompatible – components designed for one platform do not function on

the other, and buyers and sellers single-home on just one platform.

There are two sides: sellers (developers) denoted by S and buyers (end-

users) denoted by B. The number of agents on side k = B,S of platform i =

1, 2 is nki. We normalize and assume market coverage so that nk1+nk2 = 1.

Platform i’s access price to side k is pki.

Consumer utility and developer profit on platforms i = 1, 2 are

Ui = αnSi − pBi − tBθB πi = βnBi − pSi − tSθS . (1)

The parameters in (1) are as follows:

5



• α and β – strengths of network effects on buyer and seller sides

• θB and θS – individual agents’ locations on the unit interval (uni-

formly distributed)

• tB and tS – Hotelling transport costs for buyers and sellers

Although one can solve the model with this full set of parameters, this

produces complex formulas for the equilibrium prices and market shares

that are not easily interpreted. We believe that the points of this paper can

be made more clearly by making the product differentiation and network

effects the same on both sides of the platforms: tB = tS = 1 and α = β.

This simplification does not change the flavor of the results; in the more

complex version, prices and market shares have partial derivatives of the

same sign with respect to each of the parameters.

We solve for the indifferent consumer and indifferent developer à la

Hotelling. The number of users on each side is given by

nB1 =
1

2
+
t(pB2 − pB1) + α(pS2 − pS1)

2(t2 − α2)
nS1 =

1

2
+
t(pS2 − pS1) + α(pB2 − pB1)

2(t2 − α2)

We place no restrictions on pki because in many two-sided markets one

side is charged a zero price or is even subsidized. In some cases, such a

subsidy can come in the form of development kits and other non-monetary

incentives.

Next we introduce an asymmetry between the platforms. Let each plat-

form i incur marginal costs fki to serve each side of the market, and let

platform 1’s cost advantage (or disadvantage) be denoted δk = fk2 − fk1.3

Platform i’s profit function is then

Πi = (pSi − fSi)nSi + (pBi − fBi)nBi (2)

3While the cost differences are written as marginal costs, they are linear and thus in-

terchangeable with linear quality differences between the platforms. (We thank Patrick

Rey for pointing this out.) For example, software platforms often compete for sellers

based on choice of programming language, hardware requirements, existence of knowl-

edge spillovers, and the quality of application programming interfaces (APIs) rather than

price.
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3.1 Equilibrium

The platforms play a differentiated Bertrand game, each simultaneously

choosing its price to the buyer and seller sides of the market. Each platform

will maximize (2), so it is necessary to satisfy the second order conditions

for a profit maximum. For platform 1, the second order conditions are:

∂2Π1

∂p2S1
< 0

∂2Π1

∂p2B1

< 0
∂2Π1

∂pS1∂pB1
> 0 (3)

For the simplified model we have presented above, all three second order

conditions reduce to just a single inequality:

t > α (4)

The first order conditions – one for each price on each platform – consti-

tute a system of four linear equations in four unknowns. We can therefore

solve for the equilibrium prices as functions of parameters alone. For buyers

these are

p∗B1 = (t− α) +
2fB1 + fB2

3
p∗B2 = (t− α) +

2fB2 + fB1

3
(5)

Note that the inter-platform price difference is

pB2 − pB1 =
δB
3

(6)

For sellers, the prices are

p∗S1 = (t− α) +
2fS1 + fS2

3
p∗S2 = (t− α) +

2fS2 + fS1
3

(7)

The price formulas consist of two parts: the weighted average of the

marginal costs of both platforms and a markup term t − α that reflects

product differentiation and network effects. Since a platform’s price is based

on a weighted average of marginal costs, it is possible in some cases for the

duopoly equilibrium to include price below marginal cost to one side of

the market. This is not for the familiar two-sided reasoning that network

effects are stronger on one side than the other – here we have assumed α is
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the same on both sides. Rather, this is a differentiated Bertrand oligopoly

outcome that allows a high-cost platform to charge below marginal cost on

one side and make it up on the other.

In equilibrium, the number of buyers and sellers on platform 1 is

n∗B1 =
1

2
+
tδB + αδS
6(t2 − α2)

n∗S1 =
1

2
+
tδS + αδB
6(t2 − α2)

(8)

4 Tipping

4.1 No-Tipping Condition

The equilibrium we have found is a version of Armstrong (2006) with asym-

metric costs. In Armstrong’s original model, δB = δS = 0. When Armstrong

presents the Bertrand-Nash equilibrium, he writes that if the second or-

der conditions hold, “Then the model with two-sided single-homing has a

unique equilibrium that is symmetric.” (pg. 675)

In our asymmetric version, the second order conditions still guaran-

tee uniqueness, but symmetry no longer occurs. This introduces a new

issue not present in Armstrong’s paper: the mathematical solution to the

Bertrand-Nash equilibrium could occur at values such that one platform

has a negative number of users on one side of the market. Since this is not

economically meaningful, we need additional conditions beyond just the

second-order conditions.

These additional conditions come in the form of constraints on the cost

asymmetries relative to the product differentiation and network effects pa-

rameters. These are easiest to present if we restrict attention to each type

of cost asymmetry in turn. First consider the case where the costs are the

same on the seller side but differ on the buyer side.

Proposition 1: Let seller side costs be equal, so δS = 0. Then the buyer

market remains untipped (nBi ∈ (0, 1) i = 1, 2) if and only if

|δB| <
3

t

(
t2 − α2

)
(9)
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and the seller market remains untipped (nSi ∈ (0, 1) i = 1, 2) if and only if

|δB| <
3

t

(
t2 − α2

)
Proof: Follows directly from (8).

Several insights come from this result. First, an untipped equilibrium

can be supported under greater cost asymmetries when either horizontal

product differentiation t is larger or network effects α are smaller. Second,

existence requires t > α, so an asymmetry in cost of serving buyers implies a

more stringent constraint on the buyer side than on the seller side; thus, (9)

is the only salient constraint. This implies that the market could continue

to remain untipped on one side even if there were no users on one side of

one platform. The reason this is possible is that both Hotelling markets are

always assumed covered – there is no outside option. Thus, if the price is

low enough, some users will be willing to join a platform with no users on

the other side. This indicates the implicit presence of a stand-alone utility

or intrinsic value in the Armstrong model.

Similar results obtain if we let δB = 0 and examine the effect of δS

on the market. We should point out that all of the bounds on the δ’s are

strictly greater than zero for parameter values that satisfy the second order

condition. Therefore, the model does support interior equilibria where one

platform is bigger than another, and can even support interior equilibria

where one platform is simultaneously bigger on one side and smaller on the

other.

An increase in the cost advantage of platform 1 on one side of the

market will increase platform 1’s market share on both sides. The relevant

derivatives4 are

∂nB1

∂δB
=

t

6(t2 − α2)

∂nS1
∂δB

=
α

6(t2 − α2)
(10)

Since the second order condition requires t > α, both these derivatives are

positive. Also, a cost advantage on one side positively affects the number

4We focus on buyer-side asymmetries only; analogous results hold for the seller side.
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of users on both sides, but the own-side effect is stronger:

∂nB1

∂δB
>
∂nS1
∂δB

> 0

4.2 Interpretation of the Tipping Constraint

One important question when using this model to address real-world con-

cerns is whether the tipping constraint is economically important or merely

a mathematical curiosity. Recall the second order condition is t > α. From

the buyer utility function, we know that α is the value of going from nS = 0

to nS = 1, that is, it represents a buyer’s consumer surplus generated by

the entire universe of sellers.

The meaning of t, on the other hand, is the money-equivalent utility

loss from forcing the least enthusiastic potential buyer of platform 1 (the

buyer at θB = 1) to use that platform nonetheless. The same goes for the

least enthusiastic buyer of platform 2 switching to platform 1.

Taking these together, we have the following interpretation:

Proposition 2: The second order condition, t > α, requires that an agent

of any θ type must value all the components from the other side of the

market less than the monetary compensation needed to persuade the most

extreme θ types ( θ = 0 and θ = 1) to switch from one platform to another.

This condition is still required even when there is a common intrinsic value

v added to all users’ gross utility of joining each platform.

To put Proposition 2 in anecdote form, consider the most fanatical

Apple Macintosh user. The second order condition requires that this most

fanatical user would not convert to PC even if all the software in the

market was for PC and none for Mac. Likewise the most fanatical Xbox

gamer would not convert to Playstation even if every single game developer

switched to Playstation.

We thus conclude that the Armstrong model is an accurate description

of reality only when there is a sufficiently large differential in type-specific

10



gross utility. Since this difference must be greater than the total value of

software for some users, there must be significant intrinsic features of the

platforms that are not related to network effects and that are also not

related to any common intrinsic value. Examples would include specific

learning to operate a platform, design features, or stand-alone uses that

are not present on both platforms.5

Now consider the salient tipping constraint (9) in the asymmetric model.

If we rewrite (9) in terms of α and t we get

α2 < t2 − 1

3
tδB

If there is no difference in the costs and equilibrium market shares of

the two platforms, then δB = 0 and this restriction reduces to the second

order condition. But if there is initially a cost advantage, and thus a larger

than 50% market share for platform 1, the bound on the network effect is

smaller. To add this to our anecdote, if there is an asymmetry, then the

no-tipping condition requires that not just the single most fanatical user,

but a whole block of fanatical users near the endpoints of the Hotelling

line would not switch to, say, Macintosh even if all software were available

only for the PC.

4.3 Compensating Cost Advantages

We now allow for compensation between cost advantages δS and δB such

that each side maintains a constant membership level. We derive expres-

sions for partial effects of each δ on the other, given a fixed level of nki.

Suppose there is a $1 increase in platform 1 buyer side cost, so δB

falls by 1. The number of buyers on platform 1 would remain unchanged if

platform 1’s seller side cost decreased by

dδS
dδB

∣∣∣∣
nB1

= − t
α

5Note that this excludes the often-discussed ability of both VHS and Betamax to

record live TV, since this capability was present on both systems.
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and the number of sellers on platform 1 would remain unchanged if platform

1’s seller side cost decreased by

dδS
dδB

∣∣∣∣
nS1

= −α
t

Any increase in either δB or δS is always advantageous to platform 1,

so it is obviously in the platform’s interest to implement cost reductions

whether they “compensate” for other changes or not. But the compensation

results may be highly relevant when government policy changes or vendor

innovations cause exogenous changes in the costs of serving the two sides.

4.4 Towards and Empirical Interpretation

The no-tipping constraints are rather abstract, so let us relate them to the

markup over marginal cost to make them more concrete. First, suppose

that platform 2’s buyer-side costs are a multiple m of platform 1’s, so that

fB2 = (1 + m)fB1. In that case, δB = mfB1. Next, let us think of price

in terms of markup over marginal cost, so that, for example, platform 1’s

buyer price could be written pB1 = (1 + µ)fB1. Since the markup term in

the price equations is t−α, any observed markup µ would then correspond

to t− α = µfB1 when the marginal costs were equal. Then we can rewrite

the first inequality in Proposition 1 as

mfB1 < 3
t2 − α2

t

m

µ
(t− α) = 3

t2 − α2

t

m < 3
(

1 +
α

t

)
µ

The last version of the inequality says that platform 2 can have a cost

multiple at least 3 times the price-cost markup of platform 1 and the market

will remain untipped. Thus, despite the linearity of the Armstrong model,

it is quite forgiving in terms of what cost asymmetries can be sustained as

an interior solution.
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5 Conclusion

We solve both sides of an asymmetric two-sided market model to find

how various parameter changes can affect the market equilibrium. We find

that some level of inter-platform asymmetry in costs is tolerable before the

market tips fully on either side, and cost asymmetries can compensate for

each other to maintain a given membership share on each platform.

We have also shown that when interpreting the Armstrong model, there

must be a stand-alone value of the platform to both buyers and sellers.

Otherwise the second-order conditions do not make economic sense because

they impose limits on the value that can come from indirect network effects

across the two sides of the market.

Overall our conclusion is that the Armstrong model is fairly robust

to asymmetries. In particular, our example using price-cost margins sug-

gests that platforms can be quite different without violating the no-tipping

constraints.
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