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Abstract:   This paper explores the relevance of unknown nonlinearities for growth 
empirics.  Recent theoretical contributions and case-study evidence suggest that non-
linearities are pervasive in the growth process.  I show that the postwar data provide 
strong evidence in favor of generalized non-linearities.  I provide two alternative 
mechanisms for making inference about the effects of production-function shifters on 
growth that do not make a priori assumptions about functional form: monotonicity 
tests and average derivative estimation.  The results of these tests point towards a 
greater role for structural variables and a smaller role for policy variables than the 
linear model.   
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The supreme goal of all theory is to 
make the irreducible basic elements as simple 
and as few as possible without having to 
surrender the adequate representation of a 
single datum of experience. 

 Albert Einstein (1933, pp.10-11) 
1. Introduction 
 

 
How important are non-linearities in the growth process?  Over the past fifteen 

years, a consensus appears to have emerged among policymakers and applied 
economists that the growth effects of economic reforms are likely to depend on a 
country’s initial conditions in a complex way.  In the words of a recent World Bank 
study: 

  
“To sustain growth requires key functions to be fulfilled, but there is no unique 

combination of policies and institutions for fulfilling them…different polices can 
yield the same result, and the same policy can yield different results, depending on 
country institutional contexts and underlying growth strategies.” (World Bank, 
2005, p. 12) 
  
Case studies of country and regional experiences often emphasize the relevance of 

structural and institutional conditions for determining the effects of policy reforms.  
For example, Sachs and Woo (1994) and Qian (2000) have argued that China’s large 
and unproductive agricultural commune system allowed gradual price liberalization to 
generate high productivity growth rates that did not materialize in Eastern European 
economies, where most employment was initially concentrated in state-owned 
enterprises.  Maloney (2006) contends that the lack of institutions that facilitate the 
adoption and creation of new technologies is key for an understanding of Latin 
America’s inability to convert natural resource rents into economic growth.  Ocampo 
(2004) argues that the effect of market reforms in Latin America varied broadly 
depending on countries’ initial level of development, geographic proximity to the 
United States, and size of external and fiscal debt overhangs. 

Recent contributions to the theoretical growth literature have also focused 
attention on the role of non-linearities in the growth process. Hausmann, Rodrik and 
Velasco (2005) use Lipsey and Lancaster’s (1956) Theorem of the Second Best to argue 
that the reduction of a particular distortion may have very different effects on welfare 
and growth depending on the initial levels of other distortions. Their theoretical 
examples illustrate the potentially complex interactions that can arise even in 
relatively simple growth models. Aghion and Griffith (2005) present a theoretical 
argument for why the link between innovation and competition – crucial to many 
endogenous growth models – should be non-linear, and provide extensive 
microeconomic evidence that such nonlinearities effectively characterize firm-level 
manufacturing data.  Non-linearities are of course not new to growth theory, but what 
distinguishes the more recent literature from prior contributions (e.g., Murphy, 
Sgleifer and Vishny, 1989, Azariades and Drazen, 1990) is its insistence that these 
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results are not only theoretically interesting but vital for making sense of the empirical 
evidence. 

This paper asks two related questions about the consequences of generalized non-
linearities in the growth process.  First, to what extent is there evidence that these 
non-linearities are present in commonly used cross-country growth data?  Our answer 
to this question is strongly affirmative: we find that in a very high number of 
specifications the linear model can be comfortably rejected, while a fraction of 
specifications also reject the hypothesis of separability (low-dimensionality).  Second, 
what are the appropriate mechanisms to make inferences on this data without making 
recourse to special parametric assumptions?  That is, what can we conclude from the 
growth data if we effectively treat the functional form characterizing existing non-
linearities as unknown instead of as given by theory?  Here our message is cautiously 
optimistic.  While the estimation tools we explore – additive separability, 
monotonicity tests and average derivative estimation – enable us to reach some 
interesting conclusions about the effects of policies, institutions and structure on the 
growth process, these conclusions are necessarily more limited than those that we 
could reach if we were in a linear world. 

This is far from the first paper to empirically analyze the relevance of non-
linearities in the growth process.  Indeed, there is a vast empirical literature that 
studies the existence of non-linear effects in the context of growth regressions.  Some 
illustrative examples are Barro (1996) on democracy, Liu and Stengos (1999) on 
education, Banerjee and Duflo (2003) on inequality, DeJong and Ripoli (2006) on 
tariffs and Chang, Kaltani, and Loayza (2006) on trade ratios. Almost invariably, the 
approach of these papers is to explore non-linearities with respect to the dimension of 
interest through parametric or non-parametric methods while assuming linearity in 
the remaining regressors. Kalatzidakis et. al. (1999) have studied higher-dimensional 
non-linearities through non-parametric estimation, but their interest was in testing 
the robustness of inferences about the linear part of the specification to non-linearities 
in a set of auxiliary variables. Durlauf and Johnson (1995) and Durlauf, Kourtellos and 
Minkin (2001) have studied more generalized non-linearities using a model of 
parameter heterogeneity in which different sets countries are characterized by 
different linear models.  These exercises commonly make strong assumptions as to the 
form that the underlying heterogeneity takes. Despite these explorations, the standard 
workhorse regression model is still that of the linear regression framework. 2 

My approach differs from the above contributions in that I center on studying 
the effect of unknown, generalized non-linearities.  More concretely, I will argue that 
it is unreasonable to make a priori assumptions about the functional form through 
which a set of variables enter into the growth function.  Doing so presumes that we 
know much more than we actually do about the data generating process.  I will also 
argue that it makes sense to treat these non-linearities as possibly high-dimensional, 
instead of concentrating on the dimension of interest while assuming that the rest of 

                                                 
2  For example, Sala-i-Martin, Doppelhoffer and Miller’s (2004) propose a Bayesian Averaging 

of Classical Estimates methodology to study the robustness of results previously found in the literature.  
Among the 67 potential explanatory variables that they consider, only one (inflation) is treated non-
linearly through a quadratic term. 
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the model is linear. Given these assumptions, I will ask, what can we conclude about 
the effects of these variables on the growth process? 

The rest of the paper proceeds as follows.  In Section 2 I analyze the theoretical 
basis for the linear growth regression and discuss the likely effects of misspecification 
bias in this framework. Section 3 briefly discusses the data set and presents tests for 
non-linearities and non-separabilities.  It then discusses several alternatives for 
drawing inferences about the nature of the growth function when there are unknown 
and generalized non-linearities.  Section 4 concludes and suggests directions for 
further research. 

 
2. Theoretical Considerations 
 

2.1. Who Threw In the Kitchen Sink? The Theoretical Basis of the 
Kitchen Sink Regression 

 
Our starting point is a brief exposition of the theoretical foundations for the 

linear growth regression.  This regression, often referred to as a “Barro” regression 
because of the deep influence of Robert Barro’s path-breaking 1991 Quarterly Journal 
of Economics article.  It consists of a regression where economic growth is the 
dependent variable and the specification is linear in the log of initial GDP, some 
measures of investment in physical and human capital, population growth, and a set of 
“production function shifters” that commonly includes policy, institutional and 
structural controls. Formally, the specification often looks like:  

 Znssy hktY βαααααγ +++++= − 432110 ln      (1) 

where Yγ  is the rate of per capita GDP growth, 1−ty  is initial GDP, ks  and hs  

refer respectively to the rates of investment in physical and human capital, n is the rate 
of population growth and Z is the vector of potential production function shifters.   

Given the ease of running this regression with readily available data sets and 
the obvious interest of exploring whether a particular set of policies, institutions or 
structural variables are harmful or beneficial for growth, the proliferation of applied 
work using equation (1) is not surprising.  For obvious reasons, I will not discuss this 
voluminous literature here; the reader is referred to Durlauf, Johnson and Temple 
(2005) for a recent comprehensive survey.  It suffices to note for our purposes that this 
analysis tends to take the form of varying the subset of variables included in Z and 
using conventional significance tests to evaluate the effect of potential determinants 
on economic growth. 

Popular opinion to the contrary, the linear growth regression is not a purely ad-
hoc specification.  Its analytical foundations were elaborated early on in the literature 
and, to my knowledge, were first presented systematically in Mankiw, Romer, and 
Weil (1992, henceforth MRW).  The MRW specification, however, differs from 
equation (2) in a number of important respects, so it is useful to briefly revisit it. 

The MRW model can be fully described by a Cobb-Douglas production function 
that maps inputs of physical capital, human capital, and raw labor into output and one 
accumulation equation for each type of capital: 

( ) βαβα −−= 1
ttttt LAHKY ,       (2) 
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ttkt kgnysk ˆ)(ˆˆ δ++−=& ,       (3) 

ttht hgnysh ˆ)(ˆˆ δ++−=& .       (4) 

where Yt denotes output, Kt the stock of physical capital, Ht the stock of human 
capital, At is a productivity shift term, si the rate of investment in factor i (i={K,L}), δ 
the depreciation rate, and “hatted” variables denote quantities per units of effective 

labor (e.g.: 
t

t
t AL

Y
y =ˆ ).  n and g denote the proportional growth rates of Lt and At and 

are taken as exogenous to the system in the MRW formulation.  
Substituting equation (2) into (3) and (4) gives us a system of two non-linear 

differential equations in k̂  and ĥ  which can in principle be solved for numerically 

given initial conditions 0k̂  and 0ĥ . An analytical approximation to this solution can be 

arrived at by linearizing the growth rates of physical and human capital near their 

steady states, given by 0ˆˆ == tt hk &&
.  Doing this allows us to express the rate of growth of 

ŷ  as: 

)ˆ
ˆln()1)((

ˆlnˆlnˆ
ss

tt
y

ygn
dt

hd
dt

kd
y αβδβα −−++−=+=& ,    (5) 

where the second equality follows from linearly approximating the growth rates 
of k̂  and ĥ  and 

)ln(
1

)ln(
1

)ln(
1

)ˆln( δ
βα

βα
βα

β
βα

α
++

−−
+

−
−−

+
−−

= gnssy hkss ,  (6)  

denotes the log of the steady-state level of income. 
 Equation (5) is a first-order linear differential equation in )ˆln( ty .  We can solve 

it and express the solution in terms of the growth rate between 0ŷ  and tŷ as: 

  
,ˆln)1(ˆln)1()ˆ/ˆln( 00 ss

tt
t yeyeyy λλ −− −+−−=      (7) 

where )1)(( βαδλ −−++= gn   denotes the rate of convergence.  This 
expression can be rewritten in terms of observables as: 
 

.ln)1(

)ln(
1

ln
1

ln
1

)1(ln)1()/ln(

0

00

Aeg

gnsseyeyy

t

hk
tt

t

λ

λλ δ
βα

βα
βα

β
βα

α

−

−−

−++

⎥
⎦

⎤
⎢
⎣

⎡
++

−−
+

−
−−

+
−−

−+−−=
  

   
            (8) 

This equation is linear in lny0, lnsk, lnhss, ln(n+g+δ), g and lnA0 and would thus 
be estimable by linear methods if we had observations on all of these variables. Since 
we do not observe g  nor A0 this is not yet possible unless we make an assumption 
about their behavior.  MRW assume that g is constant and equal across countries and 
that differences in the initial level of technology vary randomly according to: 

 

iAA ε+= )ln()ln( 0           (9) 
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with iε  representing a country-specific shock.  Given these assumptions as well 

as a value for the common g+δ, equation (2.12) can be estimated by fitting the linear 
regression: 

 
.)ln(lnlnln 432010 ihkt gnAsAsAyAA ηδγ +++++++=     (10) 

 
to the data. This is, indeed, what MRW do. 
Equation (10) also appears to open the door to a more general approach.  As 

MRW note, “the A(0) term reflects not just technology but resource endowments, 
climate, institutions and so on.” If differences across countries are not simply 
randomly distributed but iε  is correlated with any of the regressors in (11) or (12), the 

resulting least squares coefficients would be contaminated by omitted variable bias.  
Even if this source of bias is unimportant, equations (8)-(10) seems to offer a ready 
framework to evaluate the effect of multiple measures of policies, institutions and 
economic structure on growth, by replacing A0 with a fuller, more detailed 
specification of potential production function shifters. Most of the modern growth 
empirics literature can be interpreted as doing precisely this. 

However, it is interesting to note what happens if one tries to replace At by a 
more general function A(Zt), where Zt is a vector of potential explanatory variables 
such as economic policies, institutions, and structural characteristics, which are often 
thought to affect growth by affecting the capacity of the economy to transform inputs 
into GDP.  In that case we would rewrite (2) as: 

 
 ( ) βαβα −−= 1)( ttttt LZAHKY .     (11) 

The above derivation would then follow except for the fact that A0 would now be 
replaced by A(Z0) and g=ln(At/A0) by [ ])(/)(ln),( 00 ZAZAZZg tt = .  Equation (8) would 

become: 

).(ln)1(),(
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           (12) 
What is interesting about equation (12) is that it is not a linear equation in the 

components of Z.  In order to make it into a linear function of Z one would need to add 
in two additional assumptions.  In the first place, one needs to assume that the log of 
A(Z) is linear in the production function shifters, i.e., that  

....)( 1
1

n
nZZZA ββ=          (13) 

 Additionally, one needs to assume that the growth rate of A over time is the 
same for all countries, that is, that 

igZZg ti ∀=  ),( 0 .           (14) 
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Only given these assumptions is it that (12) reduces to the traditional kitchen-
sink specification: 

.)1(
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           (15) 
How reasonable are these two additional assumptions?  Equation (13) can be 

defended along the lines that it is essentially a translation of the Cobb-Douglas 
assumption to the determinants of productivity.  If we are willing to make such a 
simplification in order to describe the relationship between physical inputs and 
outputs, it may not be too much of an additional stretch to assume that it can also 
describe the relationship between output and production function shifters. However, it 
should be noted that while the Cobb-Douglas assumption can be directly evaluated 
either by microeconomic evidence or by analysis of the behavior over time of national 
factor shares,3 there is no evident way to so this with the assumption embodied in 
equation (13). Indeed, this assumption directly rules out the second-best effects 
advocated by Hausmann, Rodrik, and Velasco (2004). 

Equation (14) embodies an assumption that is fundamentally at least as, if not 
considerably more, problematic.  Why would one expect all countries to have the same 
rate of change in A(Z) if they differ in the fundamental Z’s?  One possible line of 
defense is to see g as capturing only the effects of technological change, which is 
assumed to be public and available to all countries, while A(Z0) is held to be fixed at its 
initial level.  This leaves unanswered the questions raised by the terms of Z that have 
no relation to technological diffusion.  While the assumption that they are time-
invariant may be adequate for thinking about some production function shifters such 
as economic geography and perhaps institutions, it is much less useful if one wants to 
understand the effect of variables like economic policies, institutional reform or 
structural change.4 

Given how untenable the assumption contained in equation (14) seems, is there 
any other way to salvage the linear specification in growth empirics? An alternative is 
to limit the evolution of the production-function shifters contained in Z to other 
trajectories than those given by equation (14).  One possibility is to treat each Zi  as 
evolving towards its own long-run equilibrium Zi*, so that the model can effectively be 
linearized near the full steady state, which is characterized by the fact that not only the 
stocks of human and physical capital, but also the institutional, political, and 
structural production-function shifters, are near their rest points.  For example, we 
could write the production function as: 

( ) ∏
=

−−=
n

i
itttt

iZALHKY
1

1 θβαβα ,       (16) 

                                                 
3 See, for example, Gollin (2002), Bernanke and Gurkaynak(2002) and Rodríguez and Ortega (2006). 
4 The almost universal neglect of this non-linearity in the growth literature has been previously called 
attention to by Durlauf et al. (2005, p. 580). 
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where we have used equation (13).  Equations (3) and (4) would still 
characterize the evolution of the stocks of human and physical capital, but equation 
(14) would now be replaced by the set of n differential equations: 

)/ln( *
iiiii ZZZZ ϕ−=& , },...,1{ ni =        (17) 

where 0>iϕ  and Zi* denotes the long-run equilibrium of Zi.  In this model, we 

sue g to denote the proportional growth rate of the purely technological term At and 
assume that it is common across countries.  In this case equations (5) and (6) will now 
be replaced by: 

[ ] )/ln()()ˆ
ˆln()1)((

ˆlnˆlnˆ *

1
iii

n

i
i

ss

tt ZZgny
ygn

dt
hd

dt
kd

y θϕδαβδβα ∑
=

−+++−−++−=+=&

,            (18) 
and  

i

n

i
ihkss Zgnssy *

1

ln
1

1)ln(
1
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1

)ln(
1

)ˆln( ∑
=−−

+++
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−−
+

−−
= θ

βα
δ

βα
βα

βα
β

βα
α

,            (19)  
In the special case where δϕ ++= gni   equation (18) again reduces to an 

ordinary differential equation in ln(y), which can be solved as before leading to the 
linear expression for the growth rate: 

∑
=−+

−−
−+

−+
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−+++

−+
+

−+−=

n

i
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t
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t
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t
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βα
βα

λλ
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          (20) 
 
The assumption that the evolution of the production-function shifters in Z 

converges to a steady-state level can thus rescue the linearity assumption.  There are, 
however, a number of shortcomings with this approach.  The first one is that it is by no 
means clear that (17) is an adequate way to think about the evolution of the variables 
that we commonly include in the set of production function shifters.  To take one 
example, the literature on institutions and economic development has emphasized the 
relevance of multiple equilibria, path-dependence, and lock-in effects in institutional 
evolution.5 It is hard to square the complex dynamics that this literature often 
attributes to institutional development with the process described by (17).  A second 
problem is that, even if we consider (17) an appropriate mechanism to capture the 
dynamics of institutional change, it requires thinking about steady states as long-run 
equilibria in institutions, policies, and economic structure.  The time dimension 
necessary for these variables to reach long-run equilibrium may be much different 
from what we may consider reasonable  for factors of production, and the assumption 
that countries are generally close to their steady states may consequently be made less 
appealing.   A third problem is that the conventional specification will only hold 
if δϕ ++= gni .  If δϕ ++≠ gni , the rate of convergence to the steady state will not be 

constant but will depend on the distance of the Z variables from their steady state 
                                                 
5 See North (1990), Arthur (1994). 
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levels.  The resulting growth equation will be linear, but it will be very different from 
the conventional specification as it will depend both on the steady-state levels of Z and 
on their initial levels. 6  

The discussion in this section has highlighted the fact that the MRW derivation 
of the linear growth regression does not in general extend to the case in which 
aggregate productivity depends on a set of production function shifters.  The linear 
specification is only correct when the time path characterizing the evolution of these 
shifters obeys a set of strong restrictions; otherwise estimation by linear methods will 
be subject to misspecification bias.  We turn to considering the effects of these possible 
biases. 

 
2.2. Cooking with a Dirty Sink: The Effects of Misspecification Bias 

under Omitted Non-linearities 
 
 

2.2.1. Misspecification Bias 
 
Estimating (10) if (12) is the true function will lead to misspecification bias, and is 

analogous to imposing the invalid restriction that a nonlinearity is not present when it 
is.  Its implications can be easily seen within the framework of omitted variable bias, 
where we assume for simplicity that (14) holds and that nonlinearities in the growth 
function come exclusively from a failure of (13). 

To see this, rewrite (12) as: 
.),...(...)ln(lnlnln 0101101432010 ipnnsskt ZZhZCZCgnAhAsAyAA ηδγ +++++++++++=

 (21) 
Where ( )0101010010 ...),...,()...( pnpp ZCZCZZfZZh −−−= .Estimating (21) by OLS is 

therefore the same as invalidly imposing the restriction that 0),...,( 010 =pZZh .  The 

limit in probability of the OLS estimators }'ˆ,...ˆ{ˆ
1 nCCC =  will be: 

)),...,(,())((ˆlim 0100
1

pZZhZCovZVarCCp −+=
    

 
Even if f(.) is independent of lny0, lnsk, lnsh  and  ln(n+g+δ), all of our estimates of 

Ci will be inconsistent  estimators of }'ˆ,...ˆ{ˆ
1 nCCC =  unless h(.) is independent of Z (that 

is, unless g(.) is linear in Z).  It is impossible to predict the sign of this bias unless we 
know the sign of the covariance of Z   with the omitted term.  There is thus no reason 
to believe that our estimated iĈ s will be accurate indicators of the linear effects of 

changing a variable. 
Is there a meaningful interpretation to the linear estimator?  Some authors have 

suggested that the linear estimator provides the average effect of changing the 
explanatory variable over the sample of countries.  For example, Helpman (2004) has 
argued that “estimates that exploit cross-country variations are best interpreted as 
average effects of trade policies on growth,” while Temple (2000) writes that “growth 
                                                 
6 Details of this derivation are available upon request. 
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regressions are best thought of as picking up an average effect of schooling.” If this 
were true, the linear estimator may not be a poor guide to evaluating the expected 
effects of changes in policies or institutional and structural reforms.   

Regrettably, this conjecture is not correct.  The linear estimator in a misspecified 
non-linear model will usually not converge to the average partial effect.  To the best of 
my knowledge, this point was first made by White (1980), who established that the 
linear estimator of an arbitrary non-linear function will converge to the linear 
approximation of the function. The linear approximation is the closest linear function 
in the least-squares norm to the non-linear function.  The properties of this 
approximation are in themselves the subject of a body of mathematical literature 
known as approximation theory and will generally depend on the distribution of the 
explanatory variable (see e.g., Rice, 1964 or Rivlin, 1969). In particular, the coefficients 
of an OLS regression will only converge to the average partial effect of an arbitrary 
non-linear function when the explanatory variable is normally distributed, as the 
following proposition establishes. 

Proposition 1.  Let y be generated by the true model yi=f(xi)+εi, i=1...n, where 

f(xi) is an arbitrary nonlinear measurable function of xi∈ℜ¹, and xi is distributed 
according to the distribution function H(x) with mean normalized to 0 and variance 
σx².  Let E(εi)=0 and E(εi2)=σε²<∞,E(xiεi)=0, E(f(xi)εi)=0 and E(f(xi)²)=σf2<∞. Let  

β={β₀,β1} be the vector of coefficients from an OLS regression of y on {1,x}  Then 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

→
x
xfE

sa )(..

1β  for any function f(x) only if H(x) is the normal distribution. 

Proof: See Appendix 
 We can illustrate this result  through a simple example.  Suppose we try to 
estimate the function f(x)=x2 through a linear estimator.  The partial derivative is 
f’(x)=2x and the expected partial derivative will be E(∂f(x)/∂x)=2E(x)=2μ.  Table 1 
shows the results of a basic Monte Carlo simulation in which we have used the 
quadratic function f(x) as the data generating process but have estimated it using OLS. 
Column (1) shows the results of estimating it when we draw x from a normal 
distribution (thus satisfying the conditions of Proposition 1) while column (2) shows 
the results of estimating it with a non-normal distribution with exactly the same mean 
and standard deviation.  In particular, column (2) uses the standard log-normal 
distribution: 

πσ

σ

2
)(

)2/)((ln 22

x
exf

x−

=  

with shape parameter σ=1.  Note that the mean and standard deviation of this 
distribution are, respectively, μx=e.5≈1.65 and  σ2x=(e2-e).5≈4.67.   We also set the 
mean and standard deviation of the normally distributed variable in column (1) 
respectively to e.5 (e2-e).5.  The first of these assumptions ensures that in both cases the 
expected partial derivative is E(∂f(x)/∂x)=2μ≈3.30.  As Table 1 shows, in the case of 
the normal distribution, which is symmetric and mesokurtic, the average slope 
estimator of the linear regression in 1000 replications is 3.28, very close to the 
expected partial derivative.  In the non-symmetric case, in contrast, the average linear 
coefficient estimate is 10.64, substantially higher than the expected partial derivative. 
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Figure 1 provides some intuition as to why non-normality can generate such 
serious biases.  Here we maintain the same comparison as in Table 1 but instead 
illustrate the behavior of the estimator for a large N of 10,000 in both the normal and 
log-normal case.  As the second panel in the Figure shows, the asymmetry of the log-
normal distribution makes observations with large values relative to the mean much 
more frequent than observations with low values relative to the mean.  For a given 
mean (and thus a given mean effect), these outliers have n inordinate effect on the 
least square estimator as they are heavily penalized, tilting the least squares line 
upwards relative to the expected marginal effect.   

Proposition 1 suggests a strategy of verifying whether the explanatory variables 
often used as production-function shifters in growth empirics satisfy the conditions of 
normality. If this is the case, the linear estimates will allow us to recover the average 
partial effects.  Table 3 shows the results of skewness, kurtosis, and joint normality 
tests of 12 common explanatory variables in growth empirics (variable definitions are 
presented in Table 2). These are the same variables we will use in our empirical 
analysis of section 3.  According to these standard tests, in all twelve cases we reject 
the normality hypothesis, and in eleven of them we do so with p-values lower than 
0.01.  Commonly used explanatory variables in growth empirics appear not to satisfy 
the conditions established by Proposition 1 for the linear model to yield adequate 
estimator of the average effects.   

The characterization of the misspecification bias arising from ignored non-
linearities in (2.21) as a special case of omitted variable bias may lead us to think about 
dealing with it through the use of instrumental variables.  Regrettably, this will 
generally not be possible.  The reason is that is any candidate instruments that is 
correlated with Z is also likely to be correlated with ),...,( 010 pZZh .  Since the 

misspecified regression treats h(.) as part of the disturbance term, our instrument will 
be correlated with the residual in the second-stage regression, rendering it invalid.  
For the same reason, ignored non-linearities will generally make instruments that 
would be valid in a linear framework yield biased estimates.  This result is illustrated 
in columns (3) and (4) of Table 1, which illustrate the effect of using two stage least 
squares to estimate a quadratic relationship when the right hand side variable is 
endogenous and we have an exogenous instrument for it.  Essentially, the 
misspecification bias carries over to instrumental variables estimation, producing a 
coefficient that is similarly biased in relation to the expected partial derivative.  

This result is particularly important in light of recent interest in the use of 
instrumental variables techniques to study the causes of cross-country variations in 
growth and income.  Recent contributions (Frankel and Romer, 1999, Acemoglu, 
Johnson, and Robinson, 2001) tend to argue for the validity of their instruments based 
on their exogeneity, their causal relationship with the endogenous variable, and their 
lack of a direct effect on the dependent variable.  However, these exercises generally do 
not discuss the effect of omitted nonlinearities on the validity of their estimates.  To 
the extent that there exist plausible reasons to believe that the relation between trade, 
institutions, and development, is characterized by strong nonlinearities, these 
exercises may yield seriously distorted estimates of the average effects growth effects 
of their explanatory variables. 
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2.2.2. Non-linearities and the Curse of Dimensionality 
 
Despite the fact that the possibility of omitted non-linearities can shed doubt of the 

meaningfulness of linear estimates, the literature has seen relatively few efforts at 
seriously going beyond the linear model.  As mentioned in the introduction, the bulk of 
existing work examines nonlinearities in a particular dimension by using simple 
quadratic or multiplicative interactions on a restricted dimension, conditional on the 
rest of the specification being linear.  One of the reasons for this is the widespread 
perception that adequately dealing with unknown nonlinearities through non-
parametric techniques requires a much higher number of observations than is 
commonly available to growth researchers. 

The central result that gives reason for this skepticism is known as the curse of 
dimensionality.  As established in the pioneering work of Robert Stone (1980), it puts 
severe limits on the rate of convergence of a non-parametric estimator to the true non-
linear function.  If f(x) is the true non-linear function, d is the dimensionality of x and 
g(x) is differentiable up to the m-th derivative, then the optimal rate at which a non-
parametric estimator can converge to the true regression function is (Stone 1980): 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛=− +∫ )2/(2

2 1)()(ˆ
dmmP n

Odxxfxf .       (22) 

For example, with m=2 and d=3, then convergence occurs at a rate OP(n-4/7), 
considerably slower than the parametric OP(n-1).  A data set of 100 observations will be 
as informative under these assumptions as a data set with 14 observations in a linear 
parametric setting. 

A number of remarks are in order regarding this result.  In the first place, while 
this result places strong limitations on the set of inferences that we can make about 
f(x), it does not offer a justification for the estimation of a misspecified linear 
regression.  Unless we believe that we have enough information about the true nature 
of the model so as to impose a priori restrictions on functional form, equation (22) 
should be taken not as a measure of the limitations of the methods of nonparametric 
estimation, but rather as an indicator of the limitations of our data in uncovering the 
true growth function. 

More importantly, (22) places strong limitations on estimating f(x) with precision 
at any particular value of x.  But attempting to do this would be quite a tall order.  
While the specific form of f(x) near a particular x=x0 can certainly be of interest in the 
growth context, it is definitely not all that is of interest about f(.).  More commonly, we 
are interested in particular characteristics of f(.), such as whether it is approximately 
linear, monotonically increasing or decreasing, or has a particular “average” behavior.  
We may be able to make such statements with much more precision than we can make 
statements about the shape of f(.) at any particular point. 

This reasoning, in essence, is the basis for our empirical exercise.  In what follows, 
we will use several methods to attempt to discern information as to the shape of f(x) 
without making strong a priori assumptions about its functional form.  Without 
negating the limitations placed on us by Stone’s result, we proceed to ask the positive 
question: given existing data, what reasonable inferences can we make with respect to 
the form of the growth function if we treat it as unknown? 

 
3. Empirical Results 
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We now turn to our empirical analysis.  A logical starting point is to test whether 

the linearity hypothesis is an adequate characterization of the growth data commonly 
used in cross-country empirical exercises.  Despite the fact that we have argued that 
the linear specification does not emerge naturally from basic growth theory, it may still 
be true that it works adequately as a characterization of the world.  If this were the 
case, an argument could be put forward for its use - in the spirit of Friedman (1953) - 
as an useful if unrealistic simplification of the growth process.  As we will see, the 
evidence in this case speaks very strongly against the hypothesis of linearity, casting 
doubt on this line of reasoning. 

We will then turn to asking whether the evidence is consistent with other 
characterizations of the growth process.  In particular, we will present non-parametric 
tests of the hypotheses of separability and monotonicity.  Separability is relevant 
because it may allow for attenuation of the curse of dimensionality by the use of 
additively separable models.  Monotonicity tests address the issue of whether one can 
expect certain policy, institutional or structural reforms to be beneficial or damaging 
to all countries.  We will also provide average derivative estimates of the growth 
function that do not depend on functional form assumptions.  These estimates provide 
a useful characterization of the expected effect of changes in a production-function 
shifter, given uncertainty as to the underlying functional form. 

Our framework will take as its baseline the partially linear specification derived in 
section 2.1: 

.),...()ln(lnlnln 010432010 insskt ZZfgnAhAsAyAA ηδγ ++++++++=   (23) 

 In other words, we will adopt the Mankiw-Romer-Weil specification augmented 
with a general non-linear term in production-function shifters.  Our baseline 
specification will treat these regressors as fixed, although we will consider the 
implications of treating them as time-varying in section 3.2.2  This specification will be 
tested against restricted versions of (12) where f(.) is constrained to be linear, 
separable, or monotonic.7 

   
 

3.1 The Data 
 

Our analysis will use a standard cross-sectional data set of economy-wide 
measures of growth and its potential determinants for the 1960-03 period.  Despite 
the recent expansion of use of panel-data methods in cross-country growth analysis, I 
restrict attention to the cross-sectional framework for several reasons. First, the cross-
sectional approach is still broadly used and characterizes some of the most relevant 

                                                 
7 A commonly expressed preoccupation in the literature regards the endogeneity bias that may 

arise out of the inclusion of endogenous variables such as n or s in this specification.  One partial 
solution to this problem is to omit some of these variables from the estimated specification (see, e.g., 
Barro, 1999), thus trading off a reduction in endogeneity bias against an increment in omitted-variable 
bias.   We have repeated all of our empirical exercises using alternative subsets of linear controls.  This 
change has little effect on our results. The working paper version of this paper provides details of those 
estimations. 
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recent contributions.8 Second, relevant methodological questions remain about the 
applicability of the panel data approach to study questions of long-term economic 
growth. For example, it is not clear that segmenting the data into ten or five-year 
intervals is appropriate when the phenomenon of interest is development over long 
periods of time, and most existing panel methods used require the introduction of 
fixed effects, impeding the analysis of the effect of potential growth determinants, such 
as institutions or geography, which exhibit little or no variation over time.9   Third, the 
theory behind the specification tests presented in this section is not at this moment 
fully developed for its application to a panel context. 

I use Penn World Tables (PWT) and World-Bank PPP-adjusted per capita GDP 
Growth Rates from the World Development Indicators (WDI) as our dependent 
variables.  WDI data is available for the 1975-03 period, while PWT data is available 
for the 1960-00 period.  Given that a number of explanatory variables are not available 
for the sixties or early seventies, the former period may be more adequate – for this 
reason I also present regression results where the PWT data is restricted to the 1975-
00 period. 

As production-function shifters Z, I use combinations of twelve commonly used 
production function shifters, as well as three summary indicators made up of 
subgroups of these. The sample attempts to cover the three key dimensions that have 
played relevant roles in the analysis of growth empirics: policies, institutions and 
economic structure.  To measure policy distortions, I use government consumption as 
a percent of GDP, the average tax on imports and exports, the log of one plus the 
inflation rate and the log of the black market premium. To capture the role of 
institutions, I introduce four commonly used indicators: a measure of the rule of law, a 
measure of political instability, an index of economic freedom, and an index of the 
effectiveness of government spending. In the list of structural measures of the level of 
social development and economic modernization of nations, I use the share of primary 
exports in GDP in 1975, the rate of urbanization, the ratio of liquid liabilities to GDP, 
and the average years of life expectancy.  I also use three summary indicators of each 
of these three dimensions, made up by simple normalized averages of the relevant 
indicators.  A full description of the variables and their sources is provided in Table 2. 

As is common in the literature, I estimate (23) with a restricted subset of the 
variables available in the data set in order to economize on degrees of freedom and 
reduce possible problems of multicollinearity arising from the fact that some of 
indicators may be capturing what is essentially the same phenomenon.  Given that the 
results can be sensitive to the choice of indicators, in the next two subsections I 
present estimates for all possible specifications with one policy indicator, one 
institutional variable and one measure of structural characteristics.  In other words, 
each specification is estimated 125 times and I concentrate on the fraction of 
specifications for which a given hypothesis is rejected. This approach can be justified 

                                                 
8 Some examples are Frankel and Romer (1999), Acemoglu, Johnson and Robinson (2000), and Sala-i-
Martin, Doppelhoffer and Miller (2004).  The first two articles use a levels specification, whereas the 
third uses the growth specification that we reproduce here.  For a recent critique of the levels approach, 
see Sachs (2005).  
9 Standard random effects estimators require the random effect to be uncorrelated with the residual, 
which is by construction not the case in a growth regression.  See Durlauf, Johnson and Temple (2005) 
for a discussion.  
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in terms of Bayesian model uncertainty in the spirit of Sala-i-Martin (1997) and Sala-i-
Martin, Doppelhoffer, and Miller (2004). 

      
3.2 Linearity 
   

The null hypothesis of linearity can be tested within the framework of 
traditional OLS estimation.  Under the hypothesis that growth is a linear function of 
its determinants, non-linear terms should not enter significantly into the regression.  
A simple test of linearity can be carried out by augmenting the linear specification with 
a series approximation and testing for the joint excludability of the higher-order 
terms.  We estimate  

isipsipktty zzzpzzzsgnhy εααααδααααγ +++++++++++= −− ),,()ln(ln)ln( 7654312110

            (24) 
where sip zzz ,, stand, respectively, for the policy, institutional and structural 

indicators and ),,( sip zzzp  groups the higher-order components of the series 

approximation.  We test the null hypothesis that all terms in p(.) are jointly zero, 
A first approach to this issue is presented in Table 4.  In it I present the result of 

estimating (24) through ordinary least squares using 2nd and 3rd order Taylor 
expansions in (zp,zi,zs) as p(.).  The table reports the median F-Statistic and associated 
P-value for rejection of the null hypothesis that the non-linear terms are jointly zero, 
as would be implied by (3.1).  It also reports the percentage of specifications (out of the 
125 regressions generated by alternative combinations of the z variables) for which the 
null hypothesis is rejected.   

The results of Table 2 present relatively strong rejections of the linearity 
hypothesis.  Approximately 3/4 of the specifications that use a 2nd order Taylor 
expansion and more than 90% of the specifications that use a 3rd order Taylor 
expansion reject the linear specification.  Note that the fact that the rejections become 
stronger as the order of the polynomial is increased is not automatic: even though the 
R-squared of a regression increases whenever higher order terms (or, for that matter, 
any additional variables) are included, this is not true for F-tests for joint significance, 
which can and often do become weaker when new variables are added.   This pattern 
suggests that the higher-order polynomial terms may be playing an important role in 
explaining growth differences across countries.  These rejections remain as strong 
when we use more general non-parametric methods to approximate possible non-
linearities. 

It should also be evident that whether or not the assumptions necessary to 
ensure partial linearity of the growth function are valid is of little relevance for this 
exercise.  Establishing the relevance of the non-linear terms in f(Z) is sufficient to 
establish the lack of validity of the linear specification (10).   The significance of any 
non-linear terms in the rest of the explanatory variables can only enhance, and in no 
way weaken, the case against the linear specification. 

 
3.2.1 The “True” MRW regression 
 
As we have pointed out in section 2, the linear specification requires both 

linearity of productivity in the production function shifters (Equation 13) and equal 
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growth rates of productivity (Equation 14).  We now explore the possibility that the 
rejections of linearity that we have just derived are due to incorrectly imposing the 
restriction of equal productivity growth rates.  In other words, we now estimate: 

isipsipkttty zzzpzzzsgnhy εααααδααααγ +++++++++++= −− ),,()ln(ln)ln( 7654312110

            (25) 
where the country-specific growth rate of productivity in both equations is: 

)()()( 171615 −−− −+−+−= ststitiptptt zzzzzzg ααα .     (26) 

We now test p(.)=0 while allowing for differences across countries in g(.).  The 
restricted form is non-linear but is a known parametric functional form.  If we had 
confidence in the fact that the rejections of linearity come from the fact that p(.)=0 in 
(25), we could resort to estimating it with parametric nonlinear methods. 

Table 5 shows the results of testing p(.)=0 in (25) for our 125 specifications.  We 
estimate both regressions through nonlinear least squares and show estimates with 
both a second order and third order Taylor expansion to approximate the nonlinear 
terms.  For the purposes of equation (25), t-1 corresponds to the 1970-1974 period and 
t corresponds to the 1999-04 period.10  The results of Table 5 show that relaxing the 
restriction of equal productivity rates does not help the MRW model.  Indeed, 
rejections of linearity of A(.)are even stronger than those of the MRW linear 
specification.11 These tests thus strongly support the hypothesis that the failure of 
linearity has something to do with the failure of the assumption that productivity is 
linear in the production function shifters and not just the uniform productivity growth 
assumption. 

  
3.3 Separability 

 
The results of the preceding section tell us that the linearity assumption can be 

rejected in existing cross-country data sets, but leave us little clue as to the form of the 
actual non-linearity. In whatfollows, I start out from a very general form of the non-
linearity and study the restrictions that can be imposed on it without excessive loss of 
fit.   One key issue in estimation of such a non-linear multi-dimensional function is 
whether it can be taken to be additively separable.  Under additive separability, the 
rate of convergence of the optimal estimator increases significantly in comparison with 
the non-separable case, as it collapses to the one-dimensional non-parametric rate of 
convergence (Hastie and Tibshirani, 1990). 

I start out by testing additive separability of f(Z) in our partially linear 
specification.  This is done by testing the additively separable specification: 

 

                                                 
10 The index of government effectiveness and the economic freedom index are only available for the end 
of the period, so we set their growth rates to zero.  We also set the growth rate of the tariff indicator to 
zero because the number of countries that have observations for both the initial and final periods is just 
29. For rule of law, we use 1980-84 as the initial period and 1995-1999 as the final period.  For the black 
market premium, we use 1995-99 as the final period. 
11 The reason for this is that the restricted regression is not necessarily more flexible than the linear 
MRW equation.  The choice between the non-linear and the linear versions of the MRW model is 
essentially a choice between two non-nested parametric specifications. 
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)()()()ln(ln)log( 4312110 ssiippktty zfzfzfsgnhy +++++++++= −− αδααααγ   

            
 (27) 

against the more general model of (24).  In order to do this, I carry out three 
different specification tests that are broadly used in the literature on estimation of 
non-parametric and semi-parametric methods.  These are briefly described in what 
follows. 

The first test consists of a joint F-test for the significance of the interaction 
terms in a Taylor series approximation.  This test uses the same regression used to test 
for non-linearity in subsection 3.2 but tests the restriction that all coefficients in terms 
that include multiplicative interactions of zi variables are zero.  The results of the F-
test for significance of the interaction terms on the Taylor polynomial specification are 
shown in the first column of Table 6.  Rejection rates for the separability hypothesis at 
the 5% level of significance oscillate between 50.4% and 76.0 %, with the lowest value 
corresponding to the 1960-00 PWT data and the highest to the World Bank data. 

The basic problem with Taylor polynomial tests of separability is that they may 
lead to overrejection of the null by not taking account of the full level of potential 
complexity of the fi(.)  functions.  By restricting these functions to be third (or n-) 
order polynomials, we may end up attributing to the separable interaction terms part 
of the variation that actually arises from the complex non-linearities in each of the fi(.) 
functions. The next two tests address this issue in different ways. 

The second test of separability that I present consists in estimation of f(Z) by a 
flexible Fourier series approximation. This is essentially a polynomial expansion in 
quadratic and trigonometric terms.   There is an extensive econometric literature 
studying the properties of these estimators (Gallant, 1982, Geman and Huang, 1982 
and Gallant, 1987).  The basic benefit of a Fourier approximation is the greater 
flexibility of the trigonometric expansion to approximate highly non-linear functions.  
Formally, estimation proceeds by estimating: 
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where I have written the parametric part of the equation compactly as Xα . The 
k’i  are known as multi-indices and are vectors whose elements are integers with 
absolute values summing to a number k* less than a pre-specified value K*.  Given a 
value of K* and J, the parameter vector }...,...,...,...,{ 3113113311310 nn JJu vvuuccbbu=β  can be 

estimated by ordinary least squares.  The choices of K* and J are given and are a 
somewhat arbitrary feature of estimation. In principle the total number of terms in the 
expansion is supposed to grow with sample size but knowing this is not terribly helpful 
since it only gives us an order of magnitude and not a specific number of observations.  
In practice, many authors tend to look to the “saturation ratio”, the ratio of the total 
number of terms in the expansion M to the number of observations N.  In practice, 
saturation ratios between .25-.40 are typical of the applied literature (see Chalfant and 
Gallant, 1985 and Pagan and Ullah, 2004). We can obtain a restricted estimator rβ  by 
restricting the coefficients on the terms involving interactions between different z 
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variables to equal zero.  Let eu and er denote respectively the residuals from the 
restricted and unrestricted estimation.  Hong and White (1995) have established that 
under the null hypothesis that the restrictions are valid: 
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where M is the number of terms in the Fourier expansion.  
 The third separability test is based on analysis of the residuals derived from 
direct estimation of the additively separable specification (27) by penalized spline 
estimation12.  The residual regression test (Fan and Li, 1996) consists in estimating a 
non-parametric function of the residuals from the restricted estimation on the 
explanatory variables zi.  Under the null hypothesis, these variables should have no 
explanatory power in the auxiliary regression.  Formally, we calculate the U- statistic: 
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 , which, under the null hypothesis of separability, and as long as the restricted 
estimator converges sufficiently rapidly, is normally distributed with mean zero and 
variance ∫∫ )()(2 224 uKxpσ 13.   

 Since our data sets have a relatively small number of observations (between 
62 and 96, depending on the precise specification), asymptotic standard errors may 
lead to erroneous inferences.  We therefore construct bootstrapped test statistics based 
on residual sampling with 100 observations per specification.14  For the residual 
regression tests, the bandwidth for the additively separable estimation is set by 
Generalized Cross-Validation.  The bandwidth for the test statistic is set to 5/1−= nλ , 
thus ensuring that the higher order components of the U-statistic in (30) converge to 
zero (see Yatchew, 2003, p. 118).  However, the results are very similar under 
alternative bandwidth choices for the test statistic. 

The last two columns of Table 6 show the median test statistic, p-values, and 
number of rejections of the null of separability using respectively the Hong-White test 
and residual regression test.  For the Hong-White test we use J=1 and K*=2, which 
gives us M=28 and a saturation ratio which varies between .29 and .45.  The Hong-
White test shows a percentage of rejections of separability are in the range of 15.2-
31.2%.  For the residual regression test, the result point also to low rejection rates, in 
the range of 12.0-16.8% 
                                                 
12 This is carried out using the gam command in R .Bandwidth is chosen by Generalized Cross-
Validation. 
13 In practice, the variance term is estimated by 
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14 Li and Wang (1998) have found the bootstrap approximation to be superior to the asymptotic one for 
the residual regression tests. 
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 The three proposed tests of separability give contrasting results.  While the 
Taylor polynomial tests allow us to reject separability in a preponderance of the 
specifications, Fourier and residual regression tests, which give more flexibility to the 
separable function, indicate that most specifications are consistent with separability.  
Even in these cases, the number of specifications in which separability is rejected can 
be as high as one-third.  Furthermore, it is important to note that even though we have 
addressed small-sample biases through bootstrapping of confidence intervals, these 
tests may differ in their power to reject the alternative.  To a certain extent, this 
problem is heightened by the curse of dimensionality:  in high dimensions and with 
limited information, one is likely to be able to fit many functional forms to the data, 
including separable and non-separable specifications.  The null hypothesis of 
separability may be difficult to reject not because the world looks particularly 
separable, but rather because sparsity of data allows the world to be consistent with 
many views, among which separability is one. 
 The reading that one gives to these results will determine the approach that 
one takes to further study of the data.  If one takes the evidence as supportive of the 
additively separable specification, then one should concentrate on the estimates 
derived from the additively separable estimation in order to understand where the 
important non-linearities are concentrated. In contrast, if one reads the above results 
as indicative of non-separabilities, either because the estimators do reject separability 
in a non-negligible fraction of specifications or because failure to reject it may itself be 
a consequence of the curse of dimensionality, one would be interested in knowing 
what one can learn from the growth data without making the separability assumption.  
We explore each of these approaches in turn. 
 

3.4 Additively Separable Specification 
 

 The results of our additively separable estimates are presented in Table 7.  For 
the purposes of this and the next sub-section, we will concentrate on the analysis of a 
small subset of regressions.  This is because we take these sections to be concerned not 
so much with the robustness of the underlying results (as was the case for the tests of 
the previous two sections) but rather with the illustration of different possible 
approaches to the problem of estimating unknown non-linear specifications.  In 
particular, we will discuss the estimate of one regression for each potential production 
function shifter, in which that variable is paired with the combined indices for the 
other two dimensions.  Thus, for example, the inflation variable is paired with the 
combined institutions index as well as the combined structure index.  
 Table 7 presents a comparison of the OLS and additively separable estimates. 
It is interesting to note that in six cases the additive estimator selects the linear 
function as the appropriate one (inflation, government consumption, political 
instability, effectiveness of government spending, financial development, and the 
combined policy index). It is interesting to note that in six cases the additive estimator 
selects the linear function as the appropriate one (inflation, government consumption, 
political instability, effectiveness of government spending, financial development, and 
the combined policy index). A few others, however, indicate substantial nonlinearities. 
A few others, however, indicate substantial nonlinearities. Table 7 also shows two 
useful indicators of the difference between the linear and the additively separable 
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specification.  One is the average derivative of the function, as it compares to the linear 
slope coefficient.  In only one of the fifteen cases does the weighted average derivative 
obtained from the additively separable estimates have a different slope then the OLS 
estimate, suggesting that the results are broadly similar (in the remaining case, tariffs, 
the coefficient was not significant in OLS estimation).  However, a number of variables 
see their statistical significance altered: four variables (inflation, government 
consumption, political instability, and urbanization) lose statistical significance going 
from OLS to the additively separable estimates, while one (rule of law) now becomes 
significant. This pattern resembles what we will find in some of the more general 
specifications presented below, in that they suggest a lesser role for policy variables 
and a greater role for structural factors than the linear model. The other way in which 
we can see the differences between both approaches is by looking at the fraction of the 
sample that will share the same derivative as the linear estimate.  For a number of 
variables, this number is not high.  For example, despite the fact that both the OLS and 
the additively separable derivative estimates for the effect of the index of economic 
freedom are positive, significant at 1% and similar in magnitude, the additively 
separable estimation also predicts that 22.5% of countries in the sample would suffer 
deteriorations from growth as a result of increases in their economic freedom.  The 
result is even worse for some of the structural variables such as the urbanization rate 
and life expectancy, for which even though the slope estimators are positive, 
respectively 69.2% and 54.4% of countries would see a decline in growth associated 
with increases in these variables. 
 
 

3.5  Monotonicity Tests 
 

A logical counterpart to parametric significance tests would be to test whether 
(.)f  is a monotonically increasing (or decreasing) function of its arguments.  In other 

words, we would try to ask of the data the following question: is there evidence that if a 
country were to carry out policy reform A, we could always expect its growth rate to 
rise or at the least not to fall with that policy reform?  Formally, this is implemented by 
testing the null hypothesis: 

)',...'(),...(',': 110 mmiiii zzfzzfzzzzH ≥→=> −−    (31) 

against the alternative: 
)}',...'(),...(,','|)',...'(),,...(: 11111 mmiiiimm zzfzzfzzzzzzzzH <=>∃ −− . 

          (32)  
We can use the same framework for testing as in the previous subsection by 

imposing monotonicity as a restriction on the estimated (.)f̂  and calculating the  HW 
and  U statistics.  The only technical issue has to do with the calculation of the 
restricted estimator.  In the case of the Fourier series expansion, we can explicitly 
calculate the derivative of the series and directly impose the restriction that  

0(.)
ˆ

≥
∂
∂

iz
f

         (33) 

at all observed values of zi. The sum of squared residuals is minimized subject 
to (33) to obtain the restricted estimator (.)ˆ

rf  and calculate the HW statistic.  This is a 
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non-linear optimization problem subject to an inequality restriction that can be solved 
numerically.  For the case of the residual regression test, however, the issue is a bit 
more complex. The continuity of the first derivatives of the Fourier representation 
ensure that imposing (31) on all observations will deliver a reasonably smooth 
function. No such parametric representation exists for the restricted penalized spline 
estimator.  In order to ensure that the restricted function is reasonably smooth, I 
divide the sip ZZZ ××  space into one-thousand cubes of volume 0.13=0.001, 

constraining (.)ˆ
rf  to be monotonic between any two locally adjoining cubes as well as 

between any observed value of zi and the edges of each cube.  This still requires 
estimation subject to more than six thousand constraints. In practice, however, the 
actual number of binding constraints is much smaller, making estimation 
computationally feasible. 15 

Table 8 displays the results of the Fourier expansion and residual regression 
tests.  We have divided our results in tests of what we call the “conventional wisdom” 
and “anti-conventional wisdom” hypotheses.  The conventional wisdom hypothesis 
reflects the common accepted wisdom about the effect of the candidate variables on 
growth derived from previous literature.  In this case, government distortions are 
detrimental for growth, while certain institutions and structural changes are 
beneficial.  The anti-conventional wisdom hypothesis reflect the exactly opposite view: 
that distortions are good for growth and market-preserving institutions and structural 
modernization are bad for growth. 

The Fourier monotonicity tests are able to comfortably reject in most cases the 
anti-conventional view for the institutional and structural variables.  Interestingly, 
they are not able to reject it for four out of the five policy variables. Since for these 
variables it is also not able to reject the conventional-wisdom hypothesis, then the 
tests are completely uninformative about the effect of these variables on growth. 

Such is not the case, however, with most of the variables in the data set.  For 
three of the institutional variables as well as all the structural variables, the data 
rejects the anti-conventional wisdom view but not the conventional wisdom view.  
Therefore, the estimates suggest that at least for some countries it is true that 
increases in these variables will lead to increases in their well-being.  Interestingly, 
there are three variables in which this test rejects both the conventional and the anti-
conventional wisdom views. The variables are tariffs, the index of economic freedom, 
and the effectiveness of government spending.  For these variables, the data is 
inconsistent with the idea that the function is monotonic (which includes the 
possibility of it being irrelevant, as we test weak monotonicity).  In other words, the 
data tells us that there are some countries that will benefit, and others that will lose, 
from increases in these variables. 

                                                 
15  All problems were solved using the CONOPT solver in GAMS; the code is available from the author 
upon request. For the Fourier series expansion, the sum of squared residuals was minimized subject to 
the explicit constraint that the analytic first-derivative have the prescribed sign.  For the residual 

regression and differencing tests, we first obtain a non-parametric estimate of (.)f̂  by penalized thin-
plate regression spline estimation using the gam command in R; we then calculate the restricted 
estimate by finding the closest set of points to the fitted function that satisfy the monotonicity 
constraints in GAMS. See Mammem (1991) for a discussion of this method for construction of 
monotonic estimates. 
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The residual regression tests, in contrast, give a view which is much closer to 
the conventional wisdom. All fifteen tests reject the anti-conventional wisdom view, 
while in only one case (tariffs) is the conventional wisdom view rejected.  Interestingly, 
in the case of tariffs both the Fourier series and residual regression tests support the 
hypothesis that this variable has a complex effect on growth which is positive for some 
countries and negative in others. 

 
3.4 Weighted Average Derivative Estimators 
 
An alternative approach that does not require parametric assumptions is to 

estimate the weighted average derivatives using the estimation methods suggested by 
Hardle and Stoker (1989) and Rilstone (1991).  These authors have shown that it is 
possible to derive weighted average derivative estimators (WADE) without making 
assumptions about the functional form of the estimated function.  More importantly, 
these estimates are root-n consistent and are thus not subject to the curse of 
dimensionality.  What is important to bear in mind is that these estimates, while 
consistent, are not substitutes of the linear estimator as they only apply to the average 
over countries.  Nevertheless, they can give us a good idea of what the shape of the 
function is without making arbitrary functional assumptions. 

Table 9 shows the results of these regressions. Significance tests are again based 
on bootstrapped standard errors with 100 observations per equation.  A number of 
facts are interesting.  First, a number of variables lose significance when one goes from 
OLS to the WADE estimators.    The average slope estimate on the policy variables falls 
by 83% and that on the institutional variables declines by 42%, while that on the 
structural variables increases by 31%.  None of the policy variables have average 
derivatives significantly different from zero, while four institutional and five structural 
variables do.  The corresponding numbers for the OLS estimates are three policy 
variables, four institutional variables, and five structural variables.  The conclusions of 
the WADE estimators thus deliver a markedly different emphasis than that which 
arises out of the linear framework, suggesting a greater role for structural variables 
and a smaller role for policy variables.  Note that these results are very similar to those 
of the Fourier tests in Table 8, which also showed considerably greater uncertainty 
about the role of the policy variables. 

Statistical significance tests on WADE estimators must be interpreted with 
caution.    In a non-parametric setting, the average slope may be positive while the 
slope faced by an individual policymaker is negative or zero.  A positive significant 
average derivative estimator should not be taken to imply that policymakers can be 
certain that they will face a local positive derivative.  The uncertainty faced by the 
policymaker is a combination of two types of uncertainties: uncertainty about the 
average slope of the function, and uncertainty about the local slope that corresponds 
to his position on a function with a given average slope.  The possibility of calculating 
average derivative estimators should not lead us to overestimate the knowledge that 
we have about the effects of particular reforms in specific country settings. 

 
4. Concluding Comments 
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This paper has explored the implications of the linearity assumption for growth 
empirics.   It has argued that the theoretical basis for the linear kitchen-sink growth 
regression is tenuous, that there are considerable risks from misspecification bias that 
come from mistakenly imposing such a specification, and that the data strongly 
support the hypothesis that a linear specification is not valid.  I have explored several 
alternatives to linear analysis in growth empirics, among them additively separable 
estimation, monotonicity restrictions, and weighted average derivative estimation.  
These methods serve to deliver valuable conclusions about the growth data that are 
consistent with less restrictive specifications than the linear one.  For example, 
monotonicity tests suggest that institutional and structural reforms can be beneficial 
for at least a number of countries, and that an important subset of variables – such as 
trade policy – have complex effects in which some countries benefit but others lose 
from moving them in a given direction.  

Nevertheless, there are restrictions on the type of conclusions that can be drawn.  
This is a reflection of the limited amount of data relative to the dimensionality 
problem. It is one thing to try to distinguish between the hypothesis that a certain 
policy is equally good for all countries and the hypothesis that it is equally bad (or 
equally irrelevant) for all countries; it is quite another to try to distinguish among a 
broad set of potential hypotheses that allow for complex interactions between the 
policy and a host of country-specific characteristics such as its primary export 
dependence and the effectiveness of its government spending.   In order to do the 
former one may be able to get away with using a small number of observations; this is 
much harder to do if one is attempting the latter.   

The problem is that if the latter specification is the better reflection of reality, 
attempting to use the former is likely to lead to results that are at best misleading and 
at worse meaningless.  But the conclusion to be drawn from this inherent complexity is 
not that the empirical analysis of growth data sets is a worthless endeavor. Indeed, we 
have shown that it is possible to reach conclusions that place significant restrictions on 
the shape of the growth function without imposing insensible restrictions.  Our 
analysis does suggest that there is considerable complexity in the growth function, but 
it also finds that the conventional wisdom view in many cases is closer to reality than 
its polar opposite.  They also provide evidence in favor of a different emphasis than 
that of the traditional literature, with a greater role for structural and institutional 
variables and less of an emphasis on policy variables in the design of growth strategies.  
More generally, it suggests that the focus of the empirical growth literature may be 
better served by analyzing general, “deeper” hypotheses about the growth process than 
in trying to reach an exact characterization of its form. 
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Appendix: Proof of Proposition 1 
 

Proposition 1. Let y be generated by the true model nixfy iii ...1,)( =+= ε , where 

f(xi) is an arbitrary nonlinear measurable function of Rxi ∈  and xi is distributed 

according to the distribution function H(x) with mean normalized to 0 and 
variance 2

xσ . Let E(εi) = 0 and E(εi2) = 2
εσ <∞, E(xi εi) = 0, E(f(xi) εi) = 0 and 

E(f(xi)2)= ∞<2
fσ . Let β ={β0, β1} be the vector of coefficients from an OLS regression 
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where we have used the normalization E(x) = 0. Now let us approximate f(x) by an n-
th order Taylor expansion at x = 0, that is: 
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Since the linear projection is a linear operator (see Wooldridge, p.32) then: 
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Since E(x) = 0, (2) implies E(xq) = 0 for any q > 1 odd. For q ≥ 2 even, repeated 
substitution gives .13)...3)(1()( 2/ ⋅−−= qqzE q

ddd
q σ  These are exactly the moments of 

the normal distribution (see, e.g., Rohatgi, 1976 pp.220-221). Since the normal 
distribution is M-determinate (Stoyanov, 2000), then H(x) is the normal distribution. 
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1 2 3 4

Data Generating Process

Estimated Equation

Method of Estimation OLS OLS IV IV
Distribution of x Normal Log-Normal Normal Log-Normal
Mean of x 1.649 1.649 1.649 1.649
Variance of x 2.161 2.161 2.381 2.381
E(dy/dx) 3.297 3.297 3.297 3.297
Replications 1000 1000 1000 1000
â1 3.279 10.636 3.274 10.386

y=x 2 +ε+u              
x=z+u

y=a 0 +a 1 x+e         
x=b 0 +b 1 z

Table 1: Monte Carlo Simulation, OLS and IV estimation of quadratic function with alternative 
distributional assumptions

y=x 2 +ε

y=a 0 +a 1 x+e
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Table 2: Data Sources

1. Trade Policy Openness (1+tm)(1+te)-1, with tm (te) the ratio of import 
(export) tax revenue in total imports (exports); 

2. Log of Black Market Premium Dollar and Kraay (2002)
3. Government Consumption as a Percentage of GDP World Bank (2004)
4. Log of (1+Inflation Rate) World Bank (2004)
5.Summary Policy Indicator Sum of 1-4, normalized over the unit interval

6. Rule of Law Dollar and Kraay (2002)
7. Political Instability Average Variation in POLITY variable, Polity IV 
8. Effectiveness of Government Spending Glaeser et al. (2004)
9. Economic Freedom Index Heritage Foundation
10. Summary Institutions Indicator Sum of 6-9, normalized over the unit interval

11. Share of Primary Exports in Total Exports World Bank (2004)
12. Urbanization Rate World Bank (2004)
13. Share of liquid liabilities in GDP International Monetary Fund (2004)
14, Life Expectancy World Bank (2004)
15. Summary Structure Indicator Sum of 10-14, normalized over the unit interval

Institutional Indicators

Policy Indicators

Economic Structure Indicators
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Skewness Kurtosis
Explanatory Variable p-value p-value χ2 p-value
Log(1+Inflation) 137 0.00 0.00 129.95 0.00
Black Market Premium 132 0.00 0.00 133.65 0.00
Government Consumption 133 0.00 0.32 11.43 0.00
Tariff Rate 150 0.00 0.00 137.14 0.00
Rule of Law 112 0.06 0.01 11.58 0.00
Political Instability 121 0.00 0.00 103.43 0.00
Economic Freedom Index 137 0.00 0.01 25.06 0.00
Index of government Effectiveness 133 0.02 0.28 6.51 0.04
Primary Exports in 1970 112 0.00 0.47 14.95 0.00
Urbanization Rate 136 0.60 0.00 13.66 0.00
Life Expectancy 137 0.02 0.00 48.79 0.00
Liquid Liabilities/GDP 126 0.00 0.00 118.91 0.00

Joint Normality Test
Table 3: Skewness, Kurtosis and Normality Tests of some Common Explanatory Variables

Number of 
observations

All values refer to the D'agostino, Balanger, and D'Agostino, Jr. (1990) tests for skewness, kurtosis 
and normality   
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Table 4: Linearity Tests, 2nd and 3rd Order Polynomial Expansions
Data Set Penn World Tables, 1975-00 World Bank, 1975-03 Penn World Tables, 1960-00
Second-Order Polynomial
Median F-Statistic 3.80 2.575 3.581121
Median P-Value 0.00 0.026 0.0042164
Number significant (/125) 98 75 104
Percent Significant 78.4% 60.0% 83.2%
Third-Order Polynomial
Median F-Statistic 6.25 4.97 5.514457
Median P-Value 0.00 0.00 2.02E-06
Number significant (/125) 116 119 121
Percent Significant 92.8% 95.2% 96.8%
Reported results refer to conventional F-test of the null hypothesis that all coefficients on non-linear terms in a polynomial 
expansion are equal to zero.  Number and percent significant are calculated using a significance level of 5%.
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Data Set Penn World Tables, 1975-00 World Bank, 1975-03 Penn World Tables, 1960-00
Second-Order Taylor Expansion
Median F-Statistic 4.51 2.86 3.71
Median P-Value 0.00 0.02 0.00
Number significant (/125) 107 85 91
Percent Significant 85.6% 68.0% 72.8%
Third-Order Taylor Expansion
Median F-Statistic 12.80 8.13 6.21
Median P-Value 0.00 0.00 0.00
Number significant (/125) 122 124 120
Percent Significant 97.6% 99.2% 96.0%

Table 5:  Mankiw-Romer-Weil Nonlinear Specification, Polynomial Tests, Full MRW Specification

Estimators obtained through Nonlinear Least Squares.Reported results refer to conventional F-test of the null hypothesis that all 
coefficients on non-linear terms in a polynomial expansion are equal to zero.  Number and percent significant are calculated using a 
significance level of 5%.
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Taylor 
Polynomial Fourier Series

Residual 
Regression

Penn World Tables, 1975-00
Median Statistic 2.46216 1.102 -1.099
Number significant (/125) 74 36 16
Percent Significant (5%) 59.20% 28.80% 12.80%
World Bank, 1975-03
Median Statistic 3.131997 1.259 -1.095
Number significant (/125) 95 39 21
Percent Significant (5%) 76.00% 31.20% 16.80%
Penn World Tables, 1960-00
Median Statistic 2.233067 0.286 -1.060
Number significant (/125) 63 19 15
Percent Significant (5%) 50.40% 15.20% 12.00%

Table 6: Separability Tests, Series and Non-Parametric Estimators

Hong-White tests are based on estimation of the HW statistic in equation (29) while residual regression tests 
are based on estimation of the U-statistic in equation (30).  Confidence intervals built using bootstrapped test 
statistics with residual sampling and 100 observations. HW tests use J=1 and K*=2. Bandwidth choisen by 
Generalized Cross-Validation for the non-parametric estimate and set to n-.2 for the U-statistic.  
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OLS

Inflation -0.013* -0.0153 1.000
Log(Black Market Premium) -0.0158 -0.026 0.944
Government Consumption -0.0182** -0.0101 1.000
Tariffs 0.0166 -0.0034 0.099
Combined Policy Index -0.0183*** -0.0147** 1.000
Rule of Law 0.0095 0.0162* 0.795
Political Instabiilty 0.0226* 0.018 1.000
Effectiveness of Government Spending 0.0353*** 0.0379*** 1.000
Index of Economic Freedom 0.0351*** 0.039*** 0.775
Combined Institutions Index 0.0335*** 0.0478*** 1.000
Non-Primary Exports 0.0031 0.0081 0.649
Urbanization 0.0118* 0.0002 0.308
Life Expectancy 0.0395*** 0.015* 0.456
Financial Development 0.0242 0.0178 1.000
Combined Structure Index 0.0425*** 0.0341*** 0.789

OLS: Coefficient comes from linear estimation of equation (27) using the combined indices to proxy for the two 
other dimensions of production function shifters. All regressions use the World Bank 1975-03 sample.  
Significance test carried out with conventional t-statistics.  ASE: Unweighted average derivative assigns equal 
weight to every point on the normalized [0,1] scale.  Weighted average derivative is weighted by the frequency of 
country observations at each point.  Significance tests based on bootstrapped confidence intervals derived using 
100 replications for each regression. Stars denote significance level: *-10%, **-5%, ***-1%.

Table 7: Comparison of Average Derivatives in OLS and Additively Separable Specifications
Additively Separable Estimation

Fraction with same sign
Weighted Average 

DerivativeCoefficient
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Table 8: Monotonicity Tests, Fourier Series and Kernel Estimators

Null hypothesis Decreasing Increasing Decreasing Increasing
Inflation 0.97 0.55 0.60 0.00
Log(Black Market Premium) 0.32 0.27 0.69 0.00
Government Consumption 0.63 0.31 0.45 0.00
Tariffs 0.04 0.02 0.01 0.00
Combined Policy Index 0.49 0.15 0.52 0.00
Null hypothesis Increasing Decreasing Increasing Decreasing
Rule of Law 0.30 0.10 0.41 0.00
Political Instabiilty 0.24 0.10 0.17 0.00
Effectiveness of Government Spending 0.02 0.05 0.72 0.00
Index of Economic Freedom 0.06 0.00 0.86 0.00
Combined Institutions Index 0.54 0.00 0.81 0.00
Null hypothesis Increasing Decreasing Increasing Decreasing
Primary Exports 0.37 0.09 0.61 0.01
Urbanization 0.48 0.06 0.52 0.01
Life Expectancy 0.54 0.00 0.17 0.00
Financial Developmentg 0.11 0.01 0.52 0.00
Combined Structure Index 0.58 0.00 0.67 0.00
Table reports p-values for the null hypothesis of monotonicity. Hong-White tests are based on estimation of the HW statistic in equation (29) while residual 
regression tests are based on estimation of the U-statistic in equation (30).  Confidence intervals built using bootstrapped test statistics with residual sampling and 
100 observations. HW tests use J=1 and K*=2. Bandwidth choisen by Generalized Cross-Validation for the non-parametric estimate and set to n-.2 for the U-
statistic.

Conventional Wisdom Anti-Conventional Wisdom

Hong-White Fourier Series Test Residual Regression Penalized Spline Tests

Conventional Wisdom Anti-Conventional Wisdom
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Linear Coefficient Average Derivative
Log(1+Inflation) -0.013* -0.0025

(0.0070)                      (0.0037)                      
Black Market Premium -0.0158 -0.0033

(0.0157)                      (0.0042)                      
Government Consumption -0.0182** -0.0073

(0.0073)                      (0.0049)                      
Tariff Rate 0.0166 -0.0008

(0.0181)                      (0.0054)                      
Policy Index -0.0183*** 0.0037

(0.0067)                      (0.0045)                      
Rule of Law 0.0095 0.0057

(0.0065)                      (0.0041)                      
Political Stability 0.0226* 0.0192***

(0.0119)                      (0.0044)                      
Economic Freedom Index 0.0353*** 0.0159***

(0.0131)                      (0.0048)                      
Index of government Effectiveness 0.0351*** 0.0121***

(0.0090)                      (0.0043)                      
Institutions Index 0.0335*** 0.0102**

(0.0106)                      (0.0049)                      
Non-Primary Exports in 1970 0.0031 0.0104**

(0.0068)                      (0.0047)                      
Urbanization Rate 0.0118* 0.0139***

(0.0061)                      (0.0043)                      
Life Expectancy 0.0395*** 0.0137**

(0.0097)                      (0.0060)                      
Liquid Liabilities/GDP 0.0242 0.0206***

(0.0163)                      (0.0053)                      
Economic Structure Index 0.0425*** 0.0177***

(0.0117)                    (0.0053)                    
OLS:  Standard errors in parenthesis.  ADE: The semi-parametric estimate is 
obtained using Xplore's implementation of Hardle and Stoker's (1989) indirect 
average derivative estimator, with m=1.5. Bootstrapped standard errors, with 200 
replications, in parenthesis.  Asterisks denote levels of significance: ***-1%, **-5%, 
*-10%

Table 9: Average partial derivative estimates, linear and non-parametric 
estimates.
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Figure 1: Misspecified linear regression results
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