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Comparing Standard Regression Modeling to Ensemble Modeling: 
How Data Mining Software Can Improve Economists' Predictions 

 
 

 

INTRODUCTION 

Two currently popular buzzwords are "Big Data" and "data mining." The idea that data 

sets are too large to be subjected to traditional analysis methods, and that patterns are to be 

discerned in data utilizing new computational techniques has become engrained in the popular 

culture and media, even as few people actually understand what these methods entail. 

Economists have traditionally been wary of the idea of data mining, even as data mining 

has become common in other areas such as market analyses. The general portrayal is that data 

mining is akin to a "fishing expedition," where one looks inductively for correlative patterns in 

data without being guided by the hand of theory. In other words, the model is derived inductively 

from the data, although it can then be formalized and verified by using another data set or a 

reserved subset of the data. As economists are generally taught to have a theory firmly in hand 

before approaching data, they are naturally wary of data mining techniques. 

One of the main ways to estimate these models is a technique known as ensemble 

modeling. In ensemble modeling, the model is estimated many times on different subsamples, 

with the goal of taking the best qualities of each model and combining them into a single 

(ensemble) model, similar to a neural net (but the estimation technique is different, so this is not 

the same thing as a neural network). The actual estimation method can vary; the particular 

method we employ herein is tree-building using a particular proprietary algorithm 

implementation, TreeNet. 
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A scan of the economics literature does not turn up any articles utilizing ensemble 

method techniques (whether tree-based or neural net) prior to Varian's recent [2014] primer on 

big data, wherein he presents several short examples of how ensemble methods can be used. 

Currently, in the ensemble modelling literature, the types of empirical problems that economists 

generally deal with (often broken down in econometrics courses into cross-sectional, panel, and 

time-series methods) are really not mentioned. Only one article [Wichard and Ogorzalek 2007] 

addresses how one could do time series prediction using ensemble modeling, and the authors hail 

from an electrical engineering background. Indeed, there is an active research program to 

improve time series forecasting (cf. the International Competition of Time Series Forecasting 

held in 2011)—with little if any input from economists. Thus the economics profession's 

continued focus on regression-based estimation techniques seems somewhat narrow given the 

possibility of alternative nonlinear (including discrete) techniques that may be able to outperform 

regression in predictive power. 

This misguided focus may be partly a result of the economist's tendency to evaluate 

models by goodness-of-fit measures (such as adjusted R-squared) rather than by prediction error. 

This is a natural tendency in cases where the available data set is small and nonreplicable. 

However, bootstrapping techniques, and the closely-related technique of boosting (which is what 

TreeNet, the program we discuss below, uses), are familiar to most economists and are a way of 

moving away from treating samples as sui generis. In boosting, the model is built upon a subset 

of the data, i.e., fitted to a subset of data—and even then each model in the ensemble is built on a 

separate random sample of the data subset, in a process called "training." Once the ensemble 

model is developed from these repeated random samples, the model can then be evaluated on the 
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remaining data which had not been used in the training process, as well as utilized on additional 

data sets to see how well it predicts in the out-of-sample test. 

This final phase, similar to seeing how well a time-series model forecasts the next period, 

is, in our view, the acid test of a model. Indeed, as we show below, there is a tendency in using a 

regression model to overfit to the specific dataset, and thus regression models tend to 

underperform ensemble models when evaluated by mean squared prediction error (i.e., they have 

larger mean squared prediction error). We show this is the case both when the model is specified 

a priori and when modified through feedback from the sample (e.g., by using either a stepwise 

regression technique or by a "researcher feedback" approach), and also true both when the model 

is specified sparsely and when it is specified using the "kitchen sink" approach. Note the topic of 

how to create "appropriately" or "approximately" sparse regression models is also a newly active 

area of applied econometric research [Belloni, Chernozhukov, and Hansen 2014] now that larger 

data sets, defined as large by virtue of having both high observation counts and many variables 

per observation, become increasingly available to economists. 

 

HOW TREENET WORKS 

TreeNet is an implementation of the gradient boosting method invented by Stanford 

statistician Jerome Friedman in the late 1990s [Friedman 1999a,;1999b], also referred to as 

MART, or "Multiple Additive Regression Trees." It is sold by the company Salford Systems, 

which can provide full documentation on the methodology [Salford Systems 2001-2005].  

TreeNet is a program that models data using a series of decision trees. A simple example: 

consider a binary model that asks the question: what determines whether or not you are accepted 

at a particular university? In the first pass, consider SAT composite score as the only 
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independent variable. While a probit or logit regression model would give you a coefficient and 

thus a probability of acceptance conditional on your score, a decision tree will instead return 

nodes; for instance, that SAT scores higher than 1800 lead to acceptance and lower scores lead to 

rejection. This is a one-decision-node, two-terminal-node tree, which could be represented by a 

horizontal line at SAT = 1800, which would act as a boundary between acceptance and rejection. 

Upon adding additional decision factors, we could then construct this tree with more nodes and 

reuse independent variables at separate nodes as many times as necessary in order to fit the 

model. For instance, if we also add GPA as an independent variable, the model could possibly 

state: if SAT > 1800 and GPA > 3.0 or if GPA < 3.0 and SAT > 2100 or if GPA > 3.5 and SAT < 

1800 then accept; otherwise reject. 

TreeNet then uses an optimizing technique called boosting in order to come up with the 

ensemble model. For instance, twenty percent of the data could be randomly selected for each 

model and a tree structure built on that subsample. Then TreeNet builds another decision tree on 

another random sample of the data, and moves points along the first tree closer to the second tree 

by adding additional nodes (or, if you prefer, adjusting the weights on the nodes). The researcher 

can determine how much the initial tree changes by setting the "learn rate." By repeating this 

process with possibly hundreds (or even thousands) more trees, the original few-node model 

starts to look more like a continuous curve. 

A decision tree could of course be too specific to the data on which it is built. Imagine a 

tree with a node for every data point; this model would be irrelevant for any other data set. To 

mitigate that possibility, TreeNet builds the model with only a portion of the full data set and 

tests it on the remaining data. Through the use of a loss function, it determines how divergent the 

estimates become, and when additional trees cause more divergence than reduced error, TreeNet 
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determines that the optimal number of trees has been reached. Also, by setting a minimum 

number of observations for each terminal node (implying that a split can only be made if the 

categories have enough people in each one), the one-to-one correspondence will be avoided and 

this will aid the model in avoiding overfitting. 

TreeNet provides visual diagnostics so that the researcher can see how the model is 

performing. Figure 1 gives an example of such a diagnostic diagram. This figure shows the 

divergence of error between the training and the testing samples. The less error for both models 

the better; also the less they diverge the more externally valid the model is (i.e., the better it 

works on the testing group). If the training error is fluctuating too much this can also be an 

indicator of low external validity (i.e., oversensitivity to number of trees). The green line 

indicates the number of trees at which the model has a balance between low error and low 

divergence test results; this is reported as the optimal number of trees. 

<<Figure 1 here>> 

Another tool for evaluating model fit and results is a gains chart, which compares how 

well the model predicts dependent variable values (or outcomes) relative to no model (i.e., 

predicting the mean value in the sample as the outcome for each person). Figure 2 gives an 

example of this diagnostic diagram. On the y-axis is the cumulative predicted sum of the 

dependent values for the observations, sorted along the x-axis by closeness to the actual value. 

The more area between this line and the 45-degree line, the better the prediction (so if the line is 

exactly 45 degrees, the model does not perform better than simply guessing the mean value for 

each person). For instance, the second green point on the graph shows that the best eleven 

percent of the predictions account for sixteen percent of the real total of the dependent variable. 

<<Figure 2 here>> 
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In order to also calculate prediction error (as we do below), a sample can be divided into 

three parts, a training section, a testing section, and then (once the model has been set through 

the training and testing phases) a final section in which the model is used to see how well it 

predicts out of sample. This is the method that we use in evaluating our models as described 

below. 

 

AN APPLICATION EXAMPLE TAKEN FROM LABOR ECONOMICS 

One of the most standard empirical applications in economics is to estimate an earnings 

equation based on human capital-related variables and other variables (such as demographic 

factors) in order to explain earnings differences among people. Such an equation is based on 

standard neoclassical theory (namely that greater amounts of human capital such as education 

and work experience will lead to higher hourly earnings as a return on those human capital 

investments), and in extension has even led to general agreement about the appropriate 

functional form, namely that the returns to human capital will tend to rise and then fall over the 

lifecycle as the person first invests in more human capital early in life and then will experience 

depreciation and thus reduced returns later in life. Thus it is common to fit a quadratic in work 

experience (or to tenure in a particular firm or position) to represent this pattern; indeed, 

quadratics in experience, age, or tenure generally outperform strictly linear models. Over time 

there has also been general consensus that the best model is to use a natural log of earnings as the 

dependent variable, thus estimating a semi-log specification (where the coefficients thus can be 

read as showing percentage effects of the independent variables on earnings).1 These earnings 

models have been estimated thousands of times for different years, countries, and demographic 
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groups and thus represent one of the most accepted theoretical/empirical models in the 

economics literature.2 

This type of model thus provides an ideal test to demonstrate how ensemble modeling 

can nonetheless outperform a well-established regression model that is built on a firm economic 

theory basis. Outperformance is here measured by mean squared prediction error rather than by 

R-squared or adjusted R-squared; TreeNet provides R-squareds but not adjusted R-squareds 

(since the node method does not adapt well to making the degrees-of-freedom adjustment 

calculation) so that we can also compare those measures, and as you will see TreeNet actually 

performs well in terms of R-squared as well while apparently avoiding the peril of overfitting 

more effectively than OLS regression. 

We utilize two standard U.S. data samples for estimating our earnings regressions, the 

2009 and 2010 Annual Demographic Samples, the March versions of the Current Population 

Survey. Along with self-reported earnings (where hourly earnings are calculated by taking 

annual earnings and divided by weeks worked times normal weekly hours worked), these data 

sets provide many standard variables that are viewed by consensus (and backed up by theoretical 

reasoning) as having an effect on earnings: education, race, gender, marital status, country of 

origin, whether or not one is a native English speaker; other income sources, and current location. 

While total work experience is not asked, it is common either to use age (and age-squared) as a 

proxy for this variable, or to construct potential experience as age minus education minus six. 

Note that we could potentially put in every reported variable and let TreeNet sort through them 

(real data mining); we do an initial cull since this paper is meant to be expository rather than 

factfinding. 
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Rather than looking at tables of coefficients and standard errors or t-statistics, since 

TreeNet doesn't produce any coefficients, we can look at variable importance plots and 

interaction plots. For example, Figure 3 shows a variable importance plot from a model that 

predicts earnings. The results are normalized to the most important variable (in TreeNet's view), 

which is the variable that has the largest effect on the tree results; in this case that variable is 

education. Notice that financial assistance income is relatively unimportant; indeed, dropping 

low importance variables may improve the model. Because TreeNet already considers nonlinear 

relationships in fitting the model, age-squared is already accounted for and need not be included 

specifically in the variable list; thus it has no additional effect when explicitly included. 

<<Figure 3 here>> 

Figure 4 (a and b) shows one-predictor and two-predictor plots of the effects of 

independent variables on the final result. Figure 4 (a) shows how age can affect the natural log of 

hourly earnings, indicating the nonlinear effect and how age has an increasing positive effect 

relative to the sample average with the crossover occurring in one's early thirties (so that after 

that age people make more than the mean earnings for the sample). Figure 4 (b) shows how age 

and educational attainment can jointly affect the natural log of hourly earnings, with rising 

earnings for older ages and more years of education (but more marginal effect from higher levels 

of education than from age); the marginal (one-predictor) graphs can be seen from this graph as 

well (compare the marginal view of age in Figure 4 (b) to Figure 4 (a)). These graphs are 

consistent with standard expectations regarding the relationships between age and education to 

earnings. 

<<Figure 4 here>> 
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More importantly, we can evaluate goodness-of-fit for TreeNet vs. other models by 

utilizing both R-squared measures for in-sample fit, and prediction error measures for out-of-

sample fit (i.e., predictive ability). We compare three different OLS specifications to the results 

obtained from TreeNet. The full set of variables that we used included education, gender, marital 

status (married or not), age, potential years of experience (constructed as age minus education 

years minus six), metropolitan status, whether one is white non-Hispanic or not, whether one was 

born in the US or not, region, veteran status, number of people in the household, nonlabor 

income, and weeks of work missed. TreeNet was given all these variables to use, except potential 

years of experience was not constructed; rather it was given age and education, the underlying 

components. OLS Model 1 ("Sparse") includes the subset of the variables that are widely 

believed from previous work to be of most importance in explaining earnings (education, 

potential experience, sex, race, marital status). OLS Model 2 ("All Variables") includes the full 

set of variables but no polynomial or interaction terms. OLS Model 3 ("Complex") includes the 

full set of variables along with polynomial and interaction terms.3 All the variables used are 

listed in the Appendix. For this third model, we purposefully experimented so as to maximize 

adjusted R-squared, in other words to try to fit the model as closely as possible (by that criterion) 

to the combined testing-and-training subsample. Each model was built using two-thirds of the 

relevant data from the Current Population Survey, and then used on the remaining third of the 

data for predictive accuracy (i.e. to calculate mean squared prediction error for this subsample). 

The first two sections of Table 1 show the mean squared prediction error (MSPE), R-

squared, and adjusted R-squared (for the regression models only) for the four models (3 OLS, 1 

TreeNet) on both the 2009 and 2010 CPS samples. For both the 2009 and 2010 CPS samples, 

TreeNet actually has higher R-squared than both the sparse and all-variable OLS specifications. 
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Note that adjusted R-squared differs little for those specifications relative to regular R-squared, 

as the sample sizes are quite large for the CPS (thousands of observations). Only the complex 

model, where the model has been specifically overfitted to the samples, outperform the TreeNet 

models in terms of goodness of fit. 

<<Table 1 here>> 

However, TreeNet outperforms all three OLS models in terms of lowest MSPE. In 

particular, TreeNet substantially outperforms the overfitted model on the 2009 data, which had 

the highest adjusted R-squared of all the OLS models. 

As a final test of TreeNet's robustness, we used the 2009 TreeNet model to predict on the 

2010 CPS data and vice versa. The results are shown in the last row of Table 1. In both cases, 

TreeNet still has lower or at least as low MSPE as the best-predicting OLS model. 

One concern that researchers may have about moving away from standard regression 

methodologies is the lack of familiar output. While TreeNet (and related methods) does not 

provide the researcher with the standard type of output, namely a set of regression coefficients 

and accompanying standard errors, it does still provide a tangible output in the form of the actual 

decision trees (in the case of TreeNet at least—this would not be the case in the more black box-

neural network method of predicting outcomes). These are provided as a SAS program that 

basically consists of a series of if-then-else statements. Essentially this program can be run on 

any new data set to generate not only predicted values for the dependent variable given the 

independent variables for any observation, but also to generate hypothetical cases. 

Thus, in the labor economics example of predicting wages, one can easily perform a 

standard wage decomposition or a hypothetical such as asking what a woman would earn if she 

were subject to the male system on her independent variables. This method, known as the 
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Oaxaca-Blinder decomposition (as shown in the two important 1973 articles in the wage 

differential literature: Blinder [1973] and Oaxaca [1973]), is the standard way of creating 

adjusted wage ratios where adjustments can be made to account for differences in the average 

woman's experience and training relative to the average man's, and thus consider how much of 

the gender wage gap is attributable to differences in treatment as opposed to differences in the 

means by gender of the independent variables. 

Table 2 shows the results using TreeNet as well as Models 1 and 3 to create adjusted 

gender earnings ratios. In each case women's earnings are adjusted to ask how much they would 

make if they had the same earning-related characteristics as do men (so the numerator is 

calculated by multiplying the women's equation coefficients times the men's mean values for the 

variables). Here the OLS models are the same as in Table 1, except the samples are split by 

gender and all variables and interaction terms involving gender are dropped from the equations. 

We drop using Model 2 from this table as it does not yield notably different results from the 

complex model. 

<<Table 2 here>> 

Interestingly, while in older samples this adjustment method tended to make the 

women/men hourly earnings ratio move closer to one than in the raw data, for both years and for 

both the sparse and complex models the ratio actually varies little from the actual mean values in 

the sample, and even makes the ratio worse in some cases. This may be attributable to the fact 

that these are recession years in the US and in this recession, many men lost their jobs and thus 

would not be in our sample of earners. In addition, women's educational attainment has recently 

overtaken men's attainment, making it less likely that this adjustment would make as much of a 

difference on earnings as in the recent past. However, the TreeNet adjustment moves the ratio 
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much more in the direction towards equality, implying that there may be something related to 

nonlinearities in the recent data that are not captured by the OLS models. Thus there is a 

substantive difference in this public policy-related calculation between the two model estimation 

methods that calls for additional investigation. 

Of course, economists and other researchers who place primary emphasis on inference 

based on parameter values will still not be satisfied by this estimation approach, because there 

are still no coefficients to recover. Thus, as Stock [2010] points out that much of the profession 

has moved more towards trying to recover more credible estimates of a smaller number of key 

parameters, data mining techniques will be less acceptable for these situations when it is 

important to be able to measure a specific marginal effect (for instance, policy evaluation 

studies). In these cases, ensemble modelling may be of more use in early phases of model testing, 

for instance to reduce the set of covariates that might be used as controls in the final regression 

model.  And in cases where carefully controlled experiments are carried out in order to measure 

the effect of one key element, then there will be little or no need for data mining techniques to be 

used. 

 

CONCLUSIONS AND EXTENSIONS 

In the example delineated in the preceding section, TreeNet has produced similar results 

to those that we can produce using OLS, and the results may be preferable in terms of lower 

MSPE. In addition, there can still be substantively different results from the two modeling 

methods that may have significant policy implications, as demonstrated by the adjusted earnings 

ratio calculations. This shows that use of ensemble models can complement or even replace the 

work that has traditionally been done using standard regression models. In cases where there is 
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less theoretical guidance regarding the functional form of the model, this methodology may be 

preferable because it automatically considers variable interaction and nonlinear forms. In 

addition, in cases where the variables to be included are not clearly delineated by theory, 

TreeNet provides an alternative modeling choice to a priori exclusion of variables. 

What other programs provide ensemble modeling routines?  Three commonly-used 

statistical packages by economists--namely SAS, Stata, and the open-source package R--all 

provide options for ensemble modeling.  SAS's data mining product, Enterprise Miner, was first 

issued in 1999.  In Stata, the plugin/command boost is available (see Schonlau [2005] for a 

description of how it works).  In R, there are currently at least seven ensemble packages 

available written by different people (see Bowles [2014] for a list and description). 

What other types of economic modeling problems could be tackled using ensemble 

methods? Certainly projects that involve large quantities of data with multiple possible 

covariates: one area that Cook [2014] suggests as ripe for additional "big data" methods work is 

educational policy (as well as social policy more generally), where multiple variables available at 

the state, school district, school, and classroom level can be merged in and their interactions 

considered. For instance, Varian [2014] revisits the classic mortgage lending discrimination 

study done by Munnell, Tootell, Browne, and McEneaney [1996] to show how it could be redone 

using decision tree estimation. In this case, Varian notes that fitting a tree model that omitted 

race as an explanatory variable fit the data as well as a tree model that included it (where the 

regression model fitted in the study showed a significant negative effect of being black on the 

probability of receiving a mortgage). 

In addition, many institutional research problems come to mind, such as trying to 

determine which factors lead some donors to give money to a charity out of a long list of 
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possible covariates, or trying to determine which individual characteristics lead a person to 

success or failure in some competitive venue such as getting into a competitive university or 

getting a loan. One could thus model institutional processes that happen in closed rooms without 

actually needing to know ahead of time how a variety of factors available to the decisionmakers 

are weighted in the decisionmaking process. Indeed, many empirical projects in economics 

receive much less guidance from economic theory, other than a list of potential factors that could 

have an impact on the outcome (think of consumer theory), than the earnings equation problem 

considered above. Thus economists may find themselves increasingly pressed to compete with 

other disciplines who are less wedded to a priori specifications in terms of who is able to make 

the more effective predictions of future outcomes. Perversely, the built-in tendency of ensemble 

methods to avoid overfitting may make these models more robust to specification error and thus 

more likely to avoid the general critique of economists' models that they are better at explaining 

the past than at predicting the future. 
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Notes 

1. We do not consider whether the dependent variable should be transformed but rather stay with 

this standard method; similar to regression modeling, TreeNet does not also automatically test 

different transformations of the dependent variable. 

2. There are literally so many such studies that no single survey of the wage regression literature 

exists. See Willis [1986] for a classic survey of human capital earnings functions; Jacobsen 

[2007], Chapter 7, for discussion and examples of many of these articles in the gender wage 

differential context. 

3. A fourth model was run where experience and education were included as categorical values 

(i.e., as many dummies as the number of values minus one); this model did not outperform either 

model or 2 or model 3 by either the adjusted R-squared or the prediction error metrics, so we do 

not include results from it. 
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Figure 1 
TreeNet diagnostic for training-testing divergence and optimal number of trees 
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Figure 2 
An Example of a TreeNet Gains Chart 
 

 



Figure 3 
An Example of a TreeNet Variable Importance Plot 
 
Variable Score   

Education 100.00 |||||||||||||||||||||||||||||||||||||||||| 

Age 63.83 |||||||||||||||||||||||||| 

Child support $ per year 56.82 ||||||||||||||||||||||| 

Social security $ per year 41.29 ||||||||||||||||| 

Gender 33.25 ||||||||||||| 

Marriage Status 29.76 |||||||||||| 

Country of Birth 18.08 ||||||| 

Race (white dummy) 16.29 |||||| 

Experience 16.11 |||||| 

Born in English country 8.82 ||| 

From the South 8.37 ||| 

Other income 4.63 | 

Financial assistance income 2.91   

Age Squared 0.00   

 



Figure 4 
Examples of TreeNet Interactions Plots 
 
 
(a) one predictor (age for earnings) 
 

 
 
(b) two predictors (age and education for earnings) 
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Table 1 
Mean Squared Prediction Error and R-squareds, OLS and TreeNet Models,  
2009 and 2010 CPS Samples 
 
 
Year     2009   
Model TreeNet Sparse All Variables Complex 
MSPE 0.373 0.378 0.375 0.510 
R-Squared 0.334 0.315 0.322 0.359 
Adj R-Squared - 0.314 0.321 0.349 

     Year     2010   
Model TreeNet Sparse All Variables Complex 
MSPE 0.394 0.399 0.397 0.399 
R-Squared 0.314 0.303 0.306 0.321 
Adj. R-Squared - 0.303 0.305 0.313 
    

 
  

 
Year 

2009 data, 
2010 model 

2010 data,       
2009 model 

 Model TreeNet 
 

TreeNet 
 MSPE 0.375 

 
0.397 

 R-Squared 0.314 
 

0.334 
	
   



Table 2 
Comparison of actual and adjusted female/male earnings ratios,  
2009 and 2010 CPS Samples 
 
 
Model 2009 data 2010 data 

Actual values from sample 0.77 0.79 
  

  TreeNet 0.85 0.88 
Sparse 0.76 0.79 
Complex 0.79 0.76 

 



Appendix 
 

Variables Used in Regressions and TreeNet 
 

Dependent Variable 
Lnearn — The log real wage, calculated by taking the log of the person's earnings from the 
previous year, divided by hours usually worked times weeks worked last year. 
 
Variables in "Sparse" Model 
Education — A recoding from the level of schooling completed to the approximate years of 
schooling that would normally have been spent to achieve that level of attainment 
Experience — Potential experience, calculated as age minus years of education minus six. 
Gender — A dummy variable coded 1 for woman 
Race — A dummy variable coded 1 for anyone whose ethnicity is more than 66 percent from a 
white nonshipanic background 
Marriage — A dummy variable coded 1 for a person that is legally married 
Serve — A dummy variable coded 1 for people who have ever served on active duty in the 
United States military 
Rural — A dummy variable based on the metropolitan status provided by the CPS, coded 1 for 
people whose primary living space is non-metropolitan 
South — A dummy variable coded 1 for a person living in the southern region of the United 
States 
 
Additional Variables in "All Variable" Model 
Age — An integer variable representing the age of the person 
Non-English — A dummy variable coded 1 for people who were born in countries where 
English is not the primary language spoken 
NotborninUS — A dummy variable coded 1 if the person was born outside the United States 
h_numper — An integer variable for the number of people living in the person's household 
Losewks — An integer variable that represents the number of self-reported weeks that the 
person failed to show up for scheduled work 
ss_val — The total payment in dollars that the person receives in yearly social security payments 
csp_val — The total payment in dollars that the person receives in yearly child support payments 
vet_yn — A dummy variable for whether or not the person receives veterans payments 
fin_yn — A dummy variable for whether or not the person receives financial assistance 
oi_yn — A dummy variable for whether or not the observation receives any other income 
 
Additional Interaction and Polynomial Terms in "Complex" Model 
Agesq — The square of the age variable 
Edsq — The square of the education variable 
Exsq The square of the experience variable 
Wed — An interaction term between being a female and education 
Wedsq — The Wed variable squared 
Wex — An interaction term between being a female and experience 
Wexsq — The Wex variable squared 
(Note:  additional higher-order terms and interactions were tested and rejected.) 
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